WARP DRIVE ENGINEERING »

AMBER SPRENKELS

Warp Drive Engineering

Implementing and optimizing the

Dilithium signature scheme

Amber Sprenkels

© Amber Sprenkels 2023

Printed by Proefschriftspecialist, Zaandam
Cover design by Marilou Maes

ISBN 978-94-93391-67-3

ii

Warp Drive Engineering

Implementing and optimizing the

Dilithium signature scheme

Proefschrift ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen
op gezag van de rector magnificus prof. dr. J. M. Sanders,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

dinsdag 3 december 2024

om 10.30 uur precies
door
Amber Daan Sprenkels

geboren op 12 april 1994
te Heesch

Promotor

Prof. dr. Peter Schwabe

Copromotor

Dr. Joppe Bos
NXP Semiconductors, Belgié

Manuscriptcommissie

Prof. dr. Lejla Batina

Dr. Vadim Lyubashevsky
IBM Research Europe, Zwitserland

Prof. dr. ir. Nele Mentens

Leiden Universiteit, Nederland

Prof. dr. Damien Stehlé

Ecole Normale Supérieure de Lyon, Frankrijk

Prof. dr. Bo-Yin Yang

Academia Sinica, Taiwan

iv

Contents

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Digital signature schemes,
Post-quantum cryptography
Dilithium
Research objective
Organization of this thesis
Contributions L oo

Artifacts and measurementdata

2 Preliminaries

2.1
2.2
2.3

24

2.5

Pronouns
Notation
Signature schemes L L oL
2.3.1 Security fundamentals L.
2.3.2 Signature schemesintheory
2.3.3 Security notions
2.3.4 Signature schemes in practice
Modular integer multiplication
241 Barrettreduction
24.2 Montgomery multiplication

243 Montgomery multiplication with precomputed constants . . .
Cortex-M3 and Cortex-M4

2.5.1 The Armv7E-M Thumb architecture
2.5.2 STM32F4 DiSCOVery v v v v v v v i i v v v
253 ArduinoDue

(&2 IS) B L =)

10

13
13
14
15
16
18
19
21
22
23
25
27
27
28
29
30

Contents

2.6 Software & measurements 30
2.6.1 Side-channel resistance 30

262 Benchmarks 31

3 Dilithium 33
3.1 Lattice-based cryptography 33
3.2 Dilithium simplified o oL 34
321 KeyGen 36

322 Sign .. 36

3.23 Verify 37

3.24 Security 37

33 Dilithium 41
3.3.1 Symbols and subroutines L. 41

3.3.2 KeyGen,Sign & Verify 42

333 Parametersets 44

3.3.4 Randomized signatures 44

3.3.5 Rejectionsampling L L. 46

3.4 The number theoretic transform 48
4 Fast Dilithium on Cortex-M3 and Cortex-M4 57
41 Introduction 57
4.2 Preliminaries L 59
43 Improving speed on Cortex-M4 61
4.4 Fast Constant-Time NTTs on Cortex-M3 64
441 smullandsmlal 65

442 Cooley-Tukey and Gentleman-Sande Butterflies 68

443 NTT,NTT Lande 70

45 Results L 71
451 NTTperformance 72

452 Cortex-M4 performance 73

453 Cortex-M3 performance 73

454 Profiling 74

4. A Kyber and NewHope on Cortex-M3 75

vi

Contents

5 NTT optimizations on Cortex-M4 77
51 Introduction 77
5.1.1 Contributions L oL 78

5.2 Preliminaries Lo 79
5.2.1 Fermat Number Transform 79

5.3 Improvementstothe NTT 79
5.3.1 FPU registers & improved layer merging 79

5.3.2 Switch to CT-butterflies 80

54 Small NTTs for Dilithium 80
5.4.1 FNT for Dilithium2 and Dilithium5 81

54.2 NTT over 769 for Dilithium3 82

5.4.3 Asymmetric Multiplication 83

55 Results 83
5.5.1 Performance of NTT-related functions 84

5.5.2 Performance of the full scheme 85

6 Dilithium for memory-constrained devices 87
6.1 Introduction 87
6.2 Basic time-memory trade-offs 000 88
6.2.1 Strategy 1: Ainflash o 0L 89

6.2.2 Strategy 2: AinSRAM Lo oL 90

6.2.3 Strategy 3: streaming Aandy 90

6.2.4 Splitting signature generation in an offline and online phase . 91

625 Results 91

6.3 Introducing advanced memory optimizations 92
6.4 Signature generation L. 94
6.4.1 StreamingAandy 94

642 Compressingw 94

6.43 Compressingc-sq,c-sg,andc-ty. 95

6.4.4 Variable Allocation 98

6.4.5 Summary of optimizationso L. 100

6.5 Dilithium key generation and signature verification 100
6.5.1 KeyGeneration 101

6.5.2 Signature Verification 101

vii

Contents

6.6 Results&discussion oL oL 102
6.7 Conclusion 109
7 Post-quantum secure boot on vehicle network processors 111
7.1 Introduction 111
7.11 Secureboot 111

7.1.2 Post-quantum digital signatures for secure boot 112

713 Relatedwork L L L. 113

714 Contribution 113

7.1.5 Organization 114

7.2 S32G vehicle network processors L. 114
7.21 Platform description L. 114

7.2.2 Secure boot on the S32G274 115

7.3 S$32G274 Post-quantum Secure Boot oL L. 117
7.3.1 Dilithiumsoftware 119

7.3.2 Firmware integration 120

733 Performanceresults 121

74 Conclusion L 123
8 Dilithium nonce recycling 125
81 Introduction 125
8.2 Dilithiumrecap 126
8.2.1 Underlying identification scheme 127

8.2.2 Vanilla Dilithium, . 129

83 Ourproposal L 130
8.3.1 Resample only the prefix of y after failed z-check 130

8.3.2 Compatibility with streaming implementations 131

84 Security. 132
8.4.1 Adapting the ROM proof of [BBDD*23] 132

8.4.2 From Sign®?(M) to Trans®™2(M) 134

8.43 Zero-knowledgeness of Trans®™2(M) L. 137

844 Min-entropyofwy; L L. 137

85 Performance 140
8.5.1 Operationssaved 140

viii

Contents

8.5.2 Optimized implementation. 142

86 HAETAE e 145

87 Conclusion 145
8.A Resampling only y, after failed rg-check 146
8A1 Signd™ 146

8A2 Security 147

8A3 Performance. 152

8.B Derivation of Equation (8.1) 155

9 Conclusion 157
Bibliography 161
Summary 189
Samenvatting 191
Acknowledgements 195
About the author 199

ix

1 Introduction

1.1 Digital signature schemes

When people talk directly to one another (e.g., while in the same room), they can trust
that the words they hear from each other are unaltered. If nobody is around to listen
in to the conversation, they can also trust that the contents of their conversation
remain private, as long as the participants do not disseminate it further.

Unfortunately, many of our communications do not happen directly, but rather
indirectly through intermediates or hops; be it a courier, a hard disk,! a wire, or a
radio wave. Protecting these channels is often practically impossible, as couriers can
be bribed; hard disks can be rewritten; and wires and radio waves can be intercepted.
Consequently, most channels are by nature not trustworthy.

Throughout history, humans have applied mechanisms of enciphering messages to
protect their communications from prying eyes, for example the Caesar substitution
cipher, which was used by the Roman emperor Julius Caesar [Sin00]. Additionally,
humans have recognized or invented mechanisms that are presumed hard to recreate
by illegitimate parties. For instance, in the case of a €20 bill (which is essentially a
statement from the European Central Bank that “this sheet of cotton is worth €20”),
I trust its legitimacy because of its abundance of watermarks, microprints, special
inks and other features that are hard to mimic. Maybe the most common example is
the handwritten signature which is often presumed to be hard to mimic by anyone
other than the original author. It is an indication from the author that they have
agreed to the contents of the signed document.

In the digital world, the physical elements are often abstracted away, and we cannot

rely on physical means to protect the confidentiality or authenticity of our communi-

1Technically, this data is not in transit but at rest. Still, what is a stored piece of data, if not a message to
someone (even oneself) in the future?

1 Introduction

cations. Cryptography provides us with a method to protect the confidentiality and
authenticity of information by using mathematical operations.

One core cryptographic component for protecting the authenticity of a piece of
data is a digital signature scheme [DH76]. A digital signature is a small string of bytes
that accompanies a message (which is also a string of bytes). Signing identities—like
the European Central Bank or the agreeing parties of a contract—are associated with
key pairs, which consist of a secret key and a public key. A signing algorithm uses the
secret key to generate a digital signature over some message. Later, a verification
algorithm uses the message, the signature, and a public key to check whether the
signature correctly authenticates the message. A correct signature indicates that the
signature has been generated by somebody who knows the secret key (authentication),
and that the message has been unaltered since (integrity).

Cryptographic signature schemes are such a valuable building block that they
are—nowadays—used virtually everywhere. For example, Transport Layer Security
(used to secure protocols like HTTPS, SMTPS, etc.) uses digital signatures to au-
thenticate the identities of servers (and clients) on the web [IETF18]; cryptographic
authenticators use digital signatures to replace (or supplement) passwords, authenti-
cating users to online services [ITU18; W3C21]; messaging protocols use signatures to
authenticate the identities of communicating parties [IETF23]; consumer devices use
digital signatures to ensure the authentication and integrity of kernel images using
secure boot [UEFI22]; certificate transparency logs provide auditability by anyone
using signatures [IETF21]; et cetera. It is hard to express the extent to which the
modern digital world relies on digital signature schemes. As such, it is paramount

that they remain efficient and secure.

1.2 Post-quantum cryptography

Almost all currently deployed signature schemes are based on either the discrete
logarithm problem (DLP) [DH76] (or its elliptic-curve variant (ECDLP) [Kob87; Mil86])
or the RSA problem (RSA) [RSA78]. These problems are presumed to be hard to solve
for classical computers, i.e., the devices that we all know as computers. However,
quantum computers can theoretically solve these problems efficiently using Shor’s
algorithm, and consequently completely break all the cryptographic systems based
on them [Sho94]. At the time of writing, quantum computers are not yet very

1.2 Post-quantum cryptography

powerful—far from being able to break current deployments of the DLP or the RSA
problem [BSI20b; IBM24]. Yet, in recent years we have seen consistent advances
in their capabilities. While few field experts expect a cryptographically relevant
quantum computer (CRQC) to be constructed in the next 10 years, many expect that
one will be built eventually [GRI23].

Consequently, the cryptographic community has shifted a lot of its focus towards
developing post-quantum cryptography: cryptography that remains secure even in the
presence of a CRQC. They rely on problems different than the DLP and the RSA prob-
lem. Because of the quantum-computing threat, some government and standardization
bodies have started to standardize or recommend specific instances of post-quantum
cryptographic schemes, e.g. the German BSI [BSI20a], the French ANSSI [ANSSI22],
the (international) IRTF [IRTF18; IRTF19], or the American NSA [NSA22]. However,
by far the largest centralized effort for the evaluation of post-quantum schemes was
spearheaded by the American National Institute of Standards and Technology (NIST).

In 2016, NIST called for proposals for new post-quantum schemes to replace
the existing standards for key establishment (SP 800-56A [NIST18] and SP 800-
56B [NIST19b]) and digital signatures (FIPS 186-4 [NIST13]) [NIST16]. After receiving
69 submissions in 2017, NIST narrowed down to 26 schemes advancing to the sec-
ond round in 2019, and 7 finalists in 2020 [NIST19a; NIST20a]. In the end, NIST
standardized 4 schemes: Kyber for key encapsulation, and Dilithium [NIST22a], Fal-
con [PFHK"22], and SPHINCS" for digital signatures. SPHINCS* [BHKN™*19]—which
is based only on the security of hash functions—is considered too slow for many
applications [BKNS20], leaving Dilithium [DKLL" 18] and Falcon, which are based
on lattice optimization problems. Because of the inapplicability of SPHINCS™, break-
throughs in attacks on lattices could leave implementors of post-quantum crypto
with no standardized alternatives. Therefore, NIST called for additional signature
schemes based on other hard problems (such as codes, multivariate, isogenies, or
MPC-in-the-head) [NIST23a]. At the time of writing, that standardization process is

still ongoing.

1 Introduction

1.3 Dilithium

This thesis focuses on the Dilithium signature scheme. It was submitted to the
NIST competition in 2017 by the CRYSTALS Team? together with its sibling Ky-
ber [ABDK*17; DKLL*17], and published as an article in TCHES [DKLL"18]. Dilithi-
um is a scheme which is based on the module learning with errors (MLWE) and module
shortest integer solution (MSIS) hard problems. These are adaptations of the learning
with errors (LWE) [Reg05] and shortest integer solution (S1S) [Ajt96] hard problems in
lattice cryptography. The scheme comes in three parameter sets: Dilithium2, Dilithi-
um3, and Dilithium5—corresponding to three different security levels specified by
NIST—ranging from 128 to 256 claimed bits of security. Depending on the parameter
set, the public keys are 1.3 to 2.6 kilobytes in size, and the signatures are 2.4 to 4.6
kilobytes in size.

The scheme is built around arithmetic of 256-coefficient polynomials modulo a
23-bit prime number g = 223 — 213 + 1. It also includes many calls to deterministic
random number generation and hashing operations, which are all based on the SHAKE
extensible output function [BDPA13; NIST15a].

The name of the scheme comes from the science fiction series Star Trek. Dilithium is
a fictional material that occurs naturally in crystal form. In Star Trek, these dilithium
crystals are a critical controlling substance in the warp drive: a fictional type of
engine at the core of a spaceship that allows for travel faster than the speed of light
(warp-speed). These warp drives, and the engineering thereof, are what inspired the
title of this thesis.

1.4 Research objective

During the NIST competition, the cryptographic community set out to evaluate all
the different schemes. Many evaluation perspectives have been considered, such as a
scheme’s security properties, their suitability for incorporation into existing protocols,

and estimating their performance characteristics. Over the last five years, I have done

2CRYSTALS stands for “Cryptographic Suite for Algebraic Lattices”, which consists of Roberto Avanzi,
Joppe Bos, Léo Ducas, Eike Kiltz, Tancréde Lepoint, Vadim Lyubashevsky, John M. Schanck, Pe-
ter Schwabe, Gregor Seiler, and Damien Stehle (https://web.archive.org/web/20240202143804/
https://pg-crystals.org/).

https://web.archive.org/web/20240202143804/https://pq-crystals.org/
https://web.archive.org/web/20240202143804/https://pq-crystals.org/

1.5 Organization of this thesis

my best to contribute to this process by evaluating the question: How do embedded
software implementations of Dilithium perform?

Most of the work presented in this thesis (Chapters 4 to 6) approaches this question
by exploring possible optimization strategies to reduce the algorithm’s latency or its
memory footprint. We also evaluate the impact of adding the Dilithium scheme to an

existing embedded system in Chapter 7.

1.5 Organization of this thesis

Chapter 2 covers all of the notation used in this thesis, describes some of the basic
concepts in cryptographic engineering, and introduces the platforms that we will
be optimizing for. Then Chapter 3 focuses on the preliminaries for the Dilithium
signature scheme. Chapters 4 to 8 contain the main technical contributions of this
thesis, which will be summarized in the next section. Finally, in Chapter 9, we will tie

things together and formulate an outlook toward the future.

1.6 Contributions

All of the work presented in this thesis has been realized in collaboration with one or
more co-authors. This section outlines the academic contribution that corresponds to
each chapter, with a focus on the parts that I contributed personally. In some places I
use the phrase engineering work, which I use to describe the entirety of developing
software. This not only includes writing code, but also designing the software, setting
up build and debugging setups, designing and writing tests, and writing and executing
benchmarks. Lastly I would like to remark that, in our publishing culture, author lists

are not ordered in order of contribution but alphabetically.

Chapter 4: Fast Dilithium on Cortex-M3 and Cortex-M4

In Chapter 4, we develop and present Dilithium implementations for the Arm Cortex-
M3 and Cortex-M4 microcontroller platforms. This chapter is based on the paper that
was published in TCHES 2021, Issue 1:

1 Introduction

Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels. “Com-
pact Dilithium Implementations on Cortex-M3 and Cortex-M4.” In: IACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2021.1 (2021). Artifact
available at https://artifacts.iacr.org/tches/2021/al, pp. 1-24. ISSN:
2569-2925. DOI: 10.46586/tches.v2021.471.1-24.

The original aim of the project was to manufacture fast implementations, as well
as to analyze the general memory usage of those implementations. We achieved new
speed records for Cortex-M4. Additionally, we wrote the first implementations of
Kyber, Dilithium, and NewHope for Cortex-M3. The paper also contained an analysis
of different strategies for memory reduction of Dilithium implementation. However,
the presentation of that work has been moved to Chapter 6, such that all the work on
memory improvements of Dilithium is combined into Chapter 6.

The main contribution of this project is the Cortex-M3 implementation, to which
we all contributed an equal amount. The memory reductions (presented in Section 6.2)
were devised and implemented predominantly by me. All of us contributed equally
to the writing of the paper.

Chapter 5: NTT optimizations on the Cortex-M4

The second “speed-optimization” chapter describes various improvements to im-
plementations of the Kyber and Dilithium number theoretic transforms (NTTs) for
Cortex-M4. This chapter is based on the paper presented at ACNS 2022:

Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Amber
Sprenkels. “Faster Kyber and Dilithium on the Cortex-M4.” In: ACNS 22: 20th
International Conference on Applied Cryptography and Network Security. Ed. by
Giuseppe Ateniese and Daniele Venturi. Vol. 13269. Lecture Notes in Computer
Science. Springer, June 2022, pp. 853—-871. DOI: 10.1007/978-3-031-09234~
3_42. URL: https://eprint.iacr.org/2022/112.

The publication presented three main contributions: First, we presented speed
records for the Kyber NTT (i.e. a 16-bit NTT) by using improvement techniques that
were thus far only used for other post-quantum schemes. Second, we found a faster
instruction sequence for packed 16-bit Barrett reduction. Third, we presented a faster
method to compute ¢s; and ¢s, in Dilithium, by using a smaller ¢’ € {257, 769} instead

https://artifacts.iacr.org/tches/2021/a1
https://doi.org/10.46586/tches.v2021.i1.1-24
https://doi.org/10.1007/978-3-031-09234-3_42
https://doi.org/10.1007/978-3-031-09234-3_42
https://eprint.iacr.org/2022/112

1.6 Contributions

of the Dilithium q. We measured and reported on the speed improvements of the
completed implementations.

My primary contribution to that paper was providing the insight that the cs; and
sy multiplications in Dilithium could be executed using NTTs using smaller moduli
(i-e., the third contribution). Although I did contribute to the rest of the project in
a qualitative fashion, all of the engineering work on the Kyber implementation was
done by my coauthors. Therefore (and because the subject of this thesis is Dilithium
and not Kyber), I have removed most of the parts about Kyber, changing the main
focus of Chapter 5 to Dilithium.

Chapter 6: Dilithium for memory-constrained devices

Chapters 4 and 5 focus on improving Dilithium implementations in terms of execution
speed. They prioritize speed at the cost of memory usage, which disqualifies more
memory-constrained chips from running Dilithium. Therefore, in Chapter 6, we
analyze and optimize the memory usage of Dilithium. We aim to gain insight into the
general memory usage for a Dilithium implementation and to determine the minimal
amount of memory needed to run Dilithium.

Section 6.2 is based on Section 5 of the paper published in TCHES 2021 ([GKS21],
i.e. the paper that Chapter 4 is based on). In Section 6.2, we analyze different (high-
level) time-memory tradeoffs that arise when implementing Dilithium. As mentioned
earlier, that analysis was done mostly by me.

The rest of the chapter is based on the paper presented at AfricaCrypt 2022:

Joppe W. Bos, Joost Renes, and Amber Sprenkels. “Dilithium for Memory Con-
strained Devices” In: AFRICACRYPT 2022: 13th. Ed. by Lejla Batina and Joan
Daemen. Vol. 2022. Lecture Notes in Computer Science. Springer, July 2022,
pp. 217-235. DOI: 10.1007/978-3-031-17433-9_10. URL: https://eprint.
jacr.org/2022/323.

In the paper, we present a new memory-optimized implementation of Dilithium
written purely in C. We use multiple different (low-level) memory-optimization
strategies, such as the use of alternative NTTs modulo a smaller ¢’, the compression
of the polynomials ¢ and w, and carefully hand-crafted allocations of all the variables
in the Keygen, Sign, and Verify algorithms. We measure the achieved memory usage

and the impact on the execution speed of the algorithms.

https://doi.org/10.1007/978-3-031-17433-9_10
https://eprint.iacr.org/2022/323
https://eprint.iacr.org/2022/323

1 Introduction

This paper is one of two projects that I did during an internship at NXP Semicon-
ductors during 2021-2022. All of the engineering work of this paper has been done
solely by me, with the other authors providing technical and organizational guidance.
We all contributed equally to the writing of the paper.

Chapter 7: Post-quantum secure boot on vehicle network
processors

In Chapter 7, we divert from implementing Dilithium to integrating Dilithium. The
previous chapters focus on improving Dilithium implementations, but their evaluation
is based on in-vitro setups. For example, their benchmarks run only the signature
algorithms (i.e., no operating system or application code), and the chips are configured
for consistent measurements rather than real-world deployments. This approach is
very suitable for reproducibility and comparability with other schemes and imple-
mentations, but it risks missing factors that arise when integrating the scheme into
real-world applications. Chapter 7 aims to fill this knowledge gap. It is based on the
paper published at ESCAR 2022:

Joppe W. Bos, Brian Carlson, Joost Renes, Marius Rotaru, Amber Sprenkels, and
Geoffrey P. Waters. “Post-quantum secure boot on vehicle network processors.”
In: 20th escar Europe - The World’s Leading Automotive Cyber Security Conference
(15. - 16.11.2022). Ruhr-Universitit Bochum, 2022, pp. 112-125. por: 10.13154/
294-9372. URL: https://eprint.iacr.org/2022/635

In the paper, we examined the real-world scenario of protecting kernel images using
secure boot on the S32G274A vehicle network processor. Originally, the secure boot
flow of the S32G274A processor only supported images that are signed by classical
(i.e., pre-quantum) digital signatures. We created a fault-protected Dilithium signature
verification algorithm and added it to the S32G274A’s hardware security engine as an
option for secure boot. Afterward, we examined the impact on the installation and
boot times of the application firmware image.

This paper is the second project that I did during the internship at NXP. I integrated
Dilithium into the S32G274A’s hardware security engine in equal collaboration with
Joost Renes, and together we acquired and analyzed the results. I wrote about one-

third of the paper.

https://doi.org/10.13154/294-9372
https://doi.org/10.13154/294-9372
https://eprint.iacr.org/2022/635

1.6 Contributions
Chapter 8: Dilithium nonce recycling

This chapter came from the idea to experiment with parallelizing Dilithium across its
rejection-sampling loop iterations, as—in crypto-engineering folklore—it is often best
to parallelize code at the highest possible level. This idea evolved into the observation
that, in some scenarios, particular values in Dilithium’s rejection sampling could be
reused across loop iterations. We identified two concrete optimizations, which when
applied together result in a 3% — 6% speedup for Dilithium signing on Cortex-M4, and
similar speedups for Cortex-M3 and AVX2. The chapter is based on the unpublished

manuscript which is available as:

Amber Sprenkels and Bas Westerbaan. Don’t throw your nonces out with the
bathwater: Speeding up Dilithium by reusing the tail of y. Cryptology ePrint
Archive. 2021. URL: https://eprint.iacr.org/2020/1158 (visited on Jan. 29,
2024).

The report proposes both Dilithium optimizations and describes the argumentation
as to why we believe the modifications do not adversely affect the security of the
scheme. We analyze the reduction in the number of primitive operations (e.g., Keccak
permutes, (inverse) NTTs, etc.) and integrate the modifications into existing Dilithium
implementations for Cortex-M3, Cortex-M4, and AVX2. For both modifications, we

measure the reduction of the Dilithium signing latency.

The z-check proposal (Section 8.3.1) was invented by me and the ry-check proposal
(Appendix 8.A) was found in equal collaboration with Bas Westerbaan. I contributed
the engineering work of the simulations and implementations that were involved in
the performance analysis. The ePrint report was written in equal collaboration with
Bas, after which the project was shelved. After the publishing of [BBDD*23], I picked
up the project again and with guidance from Yi Lee I updated the security analysis.
Section 8.6, which analyzes the applicability of our proposals to HAETAE, is based on
discussions with Georg Land. All the changes and additions in Chapter 8 that were

done after the submission of the of the ePrint report? are written by me.

3That is, version 20211216:094108.

https://eprint.iacr.org/2020/1158

1 Introduction

1.7 Artifacts and measurement data

This thesis research has been carried out under the research data management policy
of the Institute for Computing and Information Science of Radboud University, The
Netherlands.*

The following research software and datasets have been produced during this PhD

research:

Speed-optimized round-2 Dilithium on Cortex-M3 and Cortex-M4 (Chap-
ters 4 and 6). The software implementations of Dilithium and the benchmarking

measurements that were recorded have been archived at

Amber Sprenkels. Speed-optimized round-2 Dilithium on Cortex-M3 and Cortex-
M4. 2024. DOI: 10.5281/zenodo.10706370. URL: https://doi.org/10.5281/
zenodo.10706370.

Speed-optimized round-3 Dilithium on Cortex-M4 (Chapter 5). The soft-
ware implementations of Dilithium and the benchmarking measurements that were

recorded have been archived at

Amber Sprenkels. Speed-optimized round-3 Dilithium on Cortex-M4. 2024. DoI:
10.5281/zenodo . 10707141. URL: https://doi.org/10.5281/zenodo.
10707141.

Memory-optimized round-3 Dilithium in pure C (Chapter 6). At the time of
construction, the software implementation became closed-source property of NXP
Semiconductors, and is not publicly archived. The benchmarking measurements have

been archived at

Amber Sprenkels. Memory-optimized round-3 Dilithium in pure C. 2024. DOI:
10.5281/zenodo . 10708284. URL: https://doi.org/10.5281/zenodo.
10708284.

“https://ru.nl/icis/research-data-management/, last accessed February 22nd, 2024.

10

https://doi.org/10.5281/zenodo.10706370
https://doi.org/10.5281/zenodo.10706370
https://doi.org/10.5281/zenodo.10706370
https://doi.org/10.5281/zenodo.10707141
https://doi.org/10.5281/zenodo.10707141
https://doi.org/10.5281/zenodo.10707141
https://doi.org/10.5281/zenodo.10708284
https://doi.org/10.5281/zenodo.10708284
https://doi.org/10.5281/zenodo.10708284
https://www.ru.nl/icis/research-data-management/

1.7 Artifacts and measurement data

Recycling nonces in Dilithium (Chapter 8). The software implementations

of Dilithium and the benchmarking measurements that were recorded have been
archived at
Amber Sprenkels. Dilithium nonce recycling experiments and benchmarks. 2024.
DOI: 10.5281/zenodo.10708819. URL: https://doi.org/10.5281/zenodo.
10708819.

11

https://doi.org/10.5281/zenodo.10708819
https://doi.org/10.5281/zenodo.10708819
https://doi.org/10.5281/zenodo.10708819

2 Preliminaries

The Dilithium signature scheme is such a central part of this thesis, that I have decided
that it deserves its own chapter (Chapter 3). This chapter will set up the mathematical
groundwork and conventions that will be used in the rest of this thesis. Unfortunately,
the line between elements that are “a part of Dilithium”, versus “general cryptographic
knowledge” is very subjective. Which cryptographic elements are basic, and which
ones are specialized? In making this distinction, I have loosely followed the principle
that any unspecialized cryptographic engineer should already know most of the
contents of this chapter as part of their basic repertoire. Even if they have never heard
of Dilithium before, I estimate that most readers should be able to skip this chapter;
and immediately move on to Chapter 3.

In Sections 2.2 and 2.3, we will first cover some of the necessary mathematical
background and notation. Then, in Sections 2.4, 2.5, and 2.6, we will look at some
cryptographic engineering fundamentals. In particular, we will look at some different
modular reduction methods, and we will provide an overview of the Cortex-M4 and

Cortex-M3 architectures, which will become relevant in Chapters 4 through 6.

2.1 Pronouns

As some of the PhD candidates who came before me have done ([Rij19; Vig21; Wig24]),
I would like to take a moment to clarify the perspective in which this manuscript
is written. By now, you may have noticed that both singular form (I) as well as
plural form (we) are used dynamically throughout this text. This is in contrast to
most academic writing, which is usually written by teams of researchers, and uses we
exclusively.

Likewise in this thesis, we is used to refer to us, the researchers who did the work.
Sometimes however, it includes you (the reader), as we take you with us as we move

through the subject matter. Other times it refers to the cryptographic community in

13

2 Preliminaries

the broader sense. However, there are times when I cannot speak for my coauthors.

In these cases I will have to speak from my own soul, in which case I will use L

2.2 Notation

This thesis follows general mathematical conventions. However, because our math
intersects with computer programming, in some places we use some notation that
might be unconventional. This section serves as a clarifying reference for the notation
that you will find in the rest of the thesis.

Polynomials, vectors, and matrices. Let Z be the ring of integers, and let Z, be
the ring of integers modulo g. Zy[X] denotes the polynomial ring in the variable X
with all coefficients in Z;. Z[X]/(f(X)) denotes the quotient ring with all operations
modulo g and f(X).

Dilithium is built around matrices and vectors of polynomials in Zq[X 1/(X™ + 1).
To allow ourselves to distinguish these types of variables from one another, each of
them has a different font. Polynomials are denoted by italic letters (e.g., c); vectors
use lowercase variable names in boldface (e.g., z); and matrices will use uppercase
variable names in boldface (e.g., A). Polynomial-coefficient indexing is zero-based; i.e.,
the first coefficient of c is ¢y. This way, the polynomial coefficient a; corresponds to
xk, However, vector and matrix indexing is one-based, i.e., the first element of z is z;.

Regular polynomial and vector multiplication is represented using conventional
multiply operators (e.g., Az and A - z). However, pointwise (or coefficient-wise) multi-
plication uses the - operator (e.g., ¢ © §).

Last, the notation |d|,, is used to describe the uniform norm (or infinity norm, or
sup norm) of a. For some polynomial a = ay+ -+ a1 X k=1 the uniform norm |al., is
equal to max(|ag|, ..., lap_1|). For vectors and matrices, the uniform norm is computed

recursively from the elements, i.e., |z|o = max(|z1]s > --- » [Zr]co)-

Modular arithmetic. For integers, a mod g and a mod™ g both denote the unique
positive representation of a modulo g, such that 0 < a < ¢q. Additionally, mod* de-
notes the centered modulo operator, i.e., a mod* qis equal to the unique representation
of a modulo ¢, such that —g <a< % For vectors and polynomials, the mod, mod*,

and mod® operations are applied on a coefficient-wise basis of the polynomial(s).

14

2.3 Signature schemes

NTT domain. Polynomials that are represented in the number-theoretic transform
NTT domain (see Section 3.4) have a hat (e.g., ¢). Moreover, because of the relation
to the fast-Fourier transform algorithm, the NTT domain is sometimes called the
“frequency domain”. Conversely, the “time domain” (or “regular domain”) corresponds

to when polynomials are in their untransformed state.

Shell expansion. Dilithium comes in different variants, and we often find ourselves
describing multiple of these variants at the same time. In these cases, braces indicate

“shell expansion”. For example, Dilithium{3,5} expands to “Dilithium3 and Dilithium5”.

Algorithms. All algorithm names can be recognized by their sans-serif names
(e.g., Dilithium2, NTT’1). For variable names, we use either single letters; or we use
names, in which case they also use a sans-serif font family (e.g., sk, pk, seed). We
write a : = 42 to denote variable assignment, and we write a ﬁ A to denote that the

variable a is uniformly sampled from the set A.

Rounding and bit-selection. By convention, |x] denotes the value of x rounded
to the nearest integer with ties towards positive infinity; and [x] and | x| denote that
x is rounded up and down respectively. By similar convention, all measurement data,
whenever rounded, uses rounding with ties towards even numbers. Additionally, we
use a custom syntax for bit-selection operations, based on [Pla21]. That is, [x]; =
x mod 2¥ selects the lowest k bits from x; and [x]k = lz_iJ is equivalent to arithmetically

shifting x by k positions to the right.

Units. When discussing algorithm speeds and sizes, cc denotes (clock) cycles (and
kce denotes kilocycles accordingly); KB denotes kilobytes (1000 bytes), and KiB
denotes kibibytes (1024 bytes).

2.3 Signature schemes

Dilithium is a cryptographic signature scheme. The concept of a cryptographic sig-
nature scheme was first proposed in the seminal paper by Diffie and Hellman from
1976 [DH76]. The goal of a signature scheme is to provide authentication and to

15

2 Preliminaries

protect the integrity of some message. In layman’s terms: a cryptographic signature
guarantees that a message originates from an identified sender (authentication) and

that the message has not been modified in transit (integrity).

In this subsection, we will briefly cover the fundamentals of cryptographic signature
schemes. For the sake of brevity I have assumed some concepts to be known, for
example the security parameter, probabilistic polynomial time algorithms (PPT), etc.
For more details and deeper definitions, I would like to direct you to [MF21], or
alternatively one of [GB08; KL20].

2.3.1 Security fundamentals

Conceptually, all asymmetric cryptographic constructions are based on some “hard”

1 For example,

problem, i.e., problems that cannot be solved in polynomial time.
RSA’s [RSA78] key-only security is based on the hardness of integer factoring, and
elliptic-curve cryptography [Kob87; Mil86] is based on some variant of the elliptic-
curve discrete-logarithm problem. We construct our cryptographic algorithms in such
a way, that if the algorithm can be broken in probabilistic polynomial time (PPT), then
that “breaking algorithm” can be used to solve instances of the underlying problem
in probabilistic polynomial time. The reasoning is that we assume that no efficient
algorithms can exist that solve the hard problem, and therefore no algorithms can
exist that break the scheme. In cryptography, these hypothetical attacking algorithms

are called adversaries (or attackers).

The central instrument that is used to formalize these scenarios, i.e., the breaking
of the scheme or the solving of the hard problem, is the game (or experiment). A
game is a mathematical thought experiment that concretely describes a cryptographic
problem statement. In the experiment, the challenger samples an instance of the
problem and challenges the adversary to find a solution to that instance. Afterward,
the challenger will check whether the solution that was proposed by the adversary
was correct. If the adversary is able to find a correct solution to the instance of the

problem, then the adversary wins the game.

!In practice, this means that the time to solve these problems increases (sub)exponentially as the size of
the inputs increases. As long as we make the inputs large enough, (e.g., we try to find really big prime
factors), then it becomes practically impossible to solve the problem.

16

2.3 Signature schemes

The advantage. For cryptographic schemes, we are interested in quantifying the
ability of an adversary to win that game. We call this probability the advantage of
the adversary. We write Adv?(szf) to denote the advantage of the adversary & for
some security game &. The goal of all security proofs is to show that, for all possible
adversaries, the advantage is negligible under some common assumptions. A bound ¢

is negligible if e(1) < L

oL for all possible polynomials p(1), and a sufficiently large A.

The security parameter. If the advantage of & is negligible for some cryptosystem,
then A describes a lower bound for the security of said cryptosystem. This A, which
is a positive number, is called the security parameter. As it increases linearly, the
advantage of ¢ is expected to decrease (sub-)exponentially. The security parameter
is provided as an argument to security games, adversaries, and primitives (i.e., (1),
(M), etc.), but for the sake of clarity it will be omitted.

Game-hopping proofs. The main strategy for arguing for the security of a scheme
is by use of a game-hopping proof. First, we assume that there exists a game (let’s call
this game ©°) wherein the adversary o breaks the scheme. Then we make a small
tweak to the game, resulting in 1. We keep doing this until we end up with the
game in which the adversary solves the cryptographic problem that was presumed to
be hard.

After each game hop from €’ to €71, the original adversary &/ might not completely
apply to €1, o/ might now lose for a fraction of instances of €1 where it would
have won in the case of €. These exception cases, where &/ wins a €' instance, but
where of loses the same €1 instance, are called bad events. We bound the prevalence
of the bad events by bounding the security loss ¢; = |Pr[?;¢ = true] —Pr[?;;l = true] |

Call the last game (i.e., the “hard problem game”) &, and let us denote its adversary
(i.e., the adversary that solves the hard problem) %. We can now compute the sum of

all ¢s to get a relation between the advantages of both adversaries:

Adv(ef) < AdV(B) + €y + - + €1 (2.1)

If the total security loss is negligible, this proof shows a useful security reduction
between €° and €. Informally, it states that algorithm o’s ability to break the
cryptographic scheme € is always less than or equal to the ability of the algorithm

17

2 Preliminaries

% to break the cryptographic hard problem €*, plus some negligible bound. As we
assume that no PPT algorithm 9 can ever exist, we also know that no PPT algorithm

o will ever exist.

Hybrid proofs. We do not know anything about the internal mechanics of &, as it
is a hypothetical black box. However, we can look at the inputs that the adversary is
provided. In a hybrid proof, we bound the statistical distance A(X;Y) of the inputs to

the adversary between two games. Then we use the property that

A (XD, (X)) < A (X5 X (2.2)
which holds for any function &. Consequently, we have an upper bound for
A (?i; ?i+1), which is equal to |Pr [?;7[= true| — Pr [?;;1 = true]| = .
2.3.2 Signature schemes in theory

Definition 2.1 (Signature scheme). A signature scheme is a tuple of three efficient

algorithms Sig : = (KeyGen, Sign, Verify) following the format

sk, pk < KeyGen(1%)
o « Sign(sk, M)
ok « Verify(pk, M, o)

where the individual algorithms are described as follows.

Key generation (KeyGen). The probabilistic key generation algorithm KeyGen, that
takes the security parameter 1’1; outputs a keypair, i.e., a pair consisting of a secret key
(sk) and a public key (pk).

Signature generation (Sign). The signature generation algorithm Sign, which may

be probabilistic, takes a secret key sk and a message M as input; outputs a signature o.

Verification (Verify). The deterministic signature verification algorithm Verify, which

takes a public key pk, a message M, and a signature o as input; outputs true if the

18

2.3 Signature schemes

signature correctly authenticates that it was generated over M using the secret key

corresponding to pk; and outputs false otherwise.

Definition 2.2 (Correctness). A signature scheme is correct if all valid signatures
generated by the Sign algorithm can be verified to be valid using the Verify algorithm,

i.e., for all A, M: Pr[Verify(pk, M, Sign(sk, M)) = true | (sk, pk) <$— KeyGen(lA)] =1.

2.3.3 Security notions

Definition 2.3 (Unforgeability under no-message Attacks (UF-NMA)). A signa-
ture scheme Sig is unforgeable under no message attacks if for all PPT adversaries of the

UF_’\'MA(‘QY) is negligible, with the game YT NMA(L) defined as
glg 8 Sig,of

advantage Adv o

Game fg{gyMA(A):

1: (pk,sk) & KeyGen(1%)
2 (M*,6%) &l (pk)
3: return (Verify(pk, M*,c™) = true)

In all unforgeability models, the adversary wins when it is able to forge a signature
over the public key that was provided. In UF-NMA, the adversary is only provided
the public key of the scheme. That is, the adversary only gets access to the public
key, which is why it is also generally known as unforgeability under key-only attack
(UF-KO).

Definition 2.4 (Unforgeability under chosen-message attacks (UF-CMA)). A

signature scheme Sig is unforgeable under chosen message attacks if for all PPT ad-

versaries & the advantage AdvUF_CMA(.Qi) is negligible, with the game ?SLiJ;Q%MA(A)
defined as
Game fstfg;gMA(}t):
1: Q = {}

2 (pk, sk) <$; KeyGen(l’l)
N
3 (M*,0%) < Dpsk,)(PK)
4: return (Verify(pk, M*, ") = true and M* ¢ Q)

19

2 Preliminaries

with a signing oracle O(sk, M) that is defined as
Signing oracle O(sk, M):
1 Q = Qui{M}
2: o « Sign(sk, M)

3 returno

Definition 2.4 defines the UF-CMA security model. In this security model, we
assume that the attacker has access to a signing oracle O. When the attacker queries
the oracle with a message, the oracle will give back a valid signature for that message.
The attacker can keep adaptively querying (a possibly large number of) signatures from
the oracle as part of their attack. The adversary wins (and the scheme is considered
broken) when the adversary can forge a signature with a non-negligible probability,
for any message, as long as they did not ask the oracle to sign that message as part of
the attack. This ensures that the adversary is not allowed to just query the oracle for
M?* and submit the resulting signature to the challenger; the attacker has to produce

a signature Oover a new message.

Definition 2.5 (Strong unforgeability under chosen-message attacks (SUF-
CMA)). A signature scheme Sig is strong unforgeable under chosen message attacks if
for all PPT adversaries </ the advantage AdySUFEMA
quSiLgJ,l;—[CMA(A) defined as

(o) is negligible, with the game

-CM
Game ?SSIEI;,C A):
1: Q = {} ;
2 (pk,sk) « KeyGen(lA)
* * $
3 (M*,0%) < Dpsk.)(Pk)
4 return (Verify(pk, M*,c™) = true and (M*,0™) ¢ Q)

with a signing oracle O(sk, M) that is defined as

Signing oracle O(sk, M):

1 0'<$— Sign(sk, M)
2 Q:=Qu{M, o)}

3 returno

20

2.3 Signature schemes

In the UF-CMA security model, the adversary wins when they can forge a signature
for any message that they did not input into the oracle as part of the attack. The
SUF-CMA is a stronger security model, which only requires that the adversary cannot
submit a signature that they received from the oracle [ADR02].

For example, consider the scenario in which the generated signatures are malleable:
When signatures are malleable, the adversary can query ¢ < O(M™), and then use
o to find some ¢* which is also valid over M*. In UF-CMA, the adversary does not
win the game, because M* was input into the signing oracle at some point. However,
in the SUF-CMA game, the adversary does win, because only o was output from the
signing oracle before; o* is different from o, so submitting that to the challenger does
result in a win. If a signature scheme is SUF-CMA secure, then it is also UF-CMA

secure.

2.3.4 Signature schemes in practice

Section 2.3.2 describes how signatures are commonly viewed in cryptography. That
description is built for efficient reasoning about their security. However, from the
perspective of the engineer, it is sometimes more convenient to not reduce the primi-
tive to such an ideal form, as it omits many details that become relevant once you
start thinking about real-world aspects.

In practice, there is often a lot of “artistic freedom” and there are many tradeoffs
to be considered. After all, a crypto implementation can do anything as long as its
outputs correspond to the specification, and as long as it protects against side-channels
(see Section 2.6.1). This also applies to the signature scheme’s APL

For example, how do we provide the random number generator? After all, real ran-
domness does not exist out of nothing; the randomness has to come from somewhere.
We could provide the scheme’s functions with random seeds, or we could supply an
RNG function as one of the inputs. Another scenario in which the common API does
not fit is when we are signing or verifying a batch of many signatures in one go. Then
we will have to come up with an API that supports batched signing/verification. Or,
what if some of the inputs or outputs do not entirely fit into memory? In this case
we might want to design some kind of API where the input values are streamed in
(like in [HRS16] or [GHKK*21]); or we can delegate the compressing of M to a more
powerful environment (i.e., implement online/offline signing [EGM96]).

21

2 Preliminaries

In crypto engineering, it is not only important to know the algorithm, but it is
also important to consider the environment (platform, use case, etc.) in which it will
be deployed; to utilize its strengths and know its weaknesses. Of all descriptions of

signatures schemes, we can then apply the one that suits the environment most.

2.4 Modular integer multiplication

Almost all asymmetric cryptographic schemes are in some way based on arithmetic
in Zq. In the ideal case, g would be a power of 2, because then the modular arithmetic
would be trivial to implement on all modern CPUs.

Unfortunately, the moduli used in many cryptographic schemes are not powers of
two; and, as such, we cannot use the CPU’s native integer multiplier as is for modular
multiplication. We overcome this complication by using modular-multiplication
algorithms.

These algorithms take some bounded inputs a, b and a modulus q. They compute
¢ =a-b (mod g), such that the range of ¢ is concretely bounded as well.

Modular-multiplication algorithms usually consist of two stages: first, a standard
multiplication operation is performed, and second, the result is reduced modulo g.
These two steps can be seen as separate operations, and the reduction step can be
used on its own for reducing values that have accumulated through operations other
than multiplication. However, for most of the implementations in this thesis, every
multiplication is followed by a modular reduction step. Therefore in this section, the
multiplication step and the reduction step will be presented as two parts of the same

algorithm.

Unsigned vs. signed representation. Over the wire and in storage, cryptographic
values (public keys, signatures, etc.) are encoded into opaque byte strings. In these
encodings, cryptographic values are represented in their standard representation,
which usually use unsigned values.

However, internally in cryptographic implementations, we are free to use any kind
of representation that fits our needs. Indeed, it is sometimes more efficient to opt for
using a signed representation instead of an unsigned representation, because unsigned
representations are less compatible with subtractions. Every time we compute a

subtraction ¢ < ay — a; on unsigned values, we have to ensure that g, is larger

22

2.4 Modular integer multiplication

than or equal to a; to prevent an integer overflow from happening. Often the most
efficient way to do this is to add a multiple of g to ay before subtracting, such that
the left operand is guaranteed to be greater than a; before the subtraction occurs, i.e.,
¢ < (a9 + kq) — a;. Apart from adding an extra addition to the code, this also widens
the bounds of the result, which leads to the need for more modular reductions modulo
g. In signed operations, this overflow does not occur, and as such, no additional code
is needed to prevent them.

Dilithium’s q is a Solinas prime [Sol11]. Although its structure has been used
to build specialized reductions in hardware ([ZZWY*21]), in software we usually
fall back to using general modular reduction algorithms. For this thesis, the two
main general modular multiplication methods are Barrett reduction [Bar87] and
Montgomery multiplication [Mon85]. Although these modular reduction methods
were initially published as algorithms for unsigned values, they have since been
adapted by others for use with signed values. Since all the implementations presented
in this thesis utilize a signed representation for their internal values, only the signed

versions of the modular-multiplication algorithms will be listed.

2.4.1 Barrett reduction

A concrete instantiation of the Barrett reduction algorithm is listed in Algorithm 2.6.

Barrett reduction is based on the following strategy:
0. (compute the unreduced multiplication of the operands a and b);
1. approximate t < l%b]
2. output ¢ « ab —1q.

With this strategy, the output bounds are determined by the quality of the approxi-
mation: the lower the approximation error, the tighter the bounds of c. The algorithm
listed in Algorithm 2.6 uses the approximation where t < [ab- (¢~ mod* 2”)]",

which only needs a single multiplication and an arithmetic shift to the right.

Correctness. Reduction methods are correct when, provided correct inputs, they al-
ways produce correct outputs. In other words, does the reduction algorithm output
¢ = ab (mod q) for all valid pairs a, b? For Barrett reduction, this is easy to see: tqis a

multiple of g, and as such, ¢ = ab — tq = ab (mod q). O

23

2 Preliminaries

Algorithm 2.6: Signed multiplication with Barrett reduction of ¢ <~ a-b (mod q)

input: a,b, g, n with g, 2" pairwise coprime, g < 2" and —2"" g < ab < 2" g

output: ¢ = ab (mod g) and —g < c < q

let: R = l—]
Ty «<a-b > n-bit multiply
st [R-T,]" > 2n-bit multiply

> n-bit multiply

W N =
&3
T
~
Q

5: return c

Usefulness. Aside from being correct, a reduction algorithm also has to be useful. For
the algorithm to be useful, we desire for the bounds of its outputs to be reasonably

tight. We can determine the algorithm’s usefulness by examining the bounds of c.

The bounds of ab are [—2"71(1, anlq), as required by the algorithm specification.
To compute the output bounds, we fill in the assumed bounds for ab and then we

simplify from there:

2"~ [2""'¢R]q

—2""lq - [-2""¢R]
] q(2" +[-2""'qR]")

IN
o
VANVAN

)

R e e e |
—q <2"—1 + [_2”_1 (2" - q):) ses q<2n_1 * [i (2n - g)])
_q<2nrf_zﬂ7’f+ [g) <c< q(zﬂ”f—zﬂ/f+ [g”
2ol

This shows that the outputs of the Barrett reduction algorithm are always between

—q and ¢, which makes the reduction algorithm useful. O

24

2.4 Modular integer multiplication

Cost. Barrett reduction uses three multiply operations. Two of the multiply op-
erations are on a single word of n bits, which is usually a cheap operation on most
platforms. However, one of these operations (Algorithm 2.6, line 2) is a 2n-bit multi-

plication, which might be considerably more expensive.

2.4.2 Montgomery multiplication

Another modular multiplication method is Montgomery multiplication, invented by
Montgomery in 1985 [Mon85]. Originally it was proposed as an algorithm for unsigned
integer multiplication. In 2018, Seiler proposed the signed variant [Sei18] that is listed
in Algorithm 2.7.

Algorithm 2.7: Signed Montgomery modular multiplication of ¢ < a-b (mod q)

input: a,b, g, n with g, 2" pairwise coprime, and —2”’1q <ab< 2"’1q
output: ¢ = 27"ab (mod ¢) and —g < c < q
let: R = ¢~ ! mod *2"

Ty «<a-b > n-bit multiply
2 t < [[Ty],-R], > n-bit multiply
32Ty« t-q > n-bit multiply
4: C < [Tl - Tz]n

5: return c

Montgomery reduction takes a different perspective from Barrett reduction, where
instead of computing ¢ = ab we compute ¢ = 27"ab. At first thought, you would think
that this eliminates the whole purpose of the reduction method, as the final result
is off by a factor 27". However, this does not matter much, because the 27" factor is
easily eliminated by Montgomery-multiplying the result with 22" (mod gq), resulting
in (27"2%")(27"ab) = ab. On the other side, this extra factor 27" adds a lot of freedom
which can be used to construct a more efficient reduction algorithm.

Instead of approximating ¢t < |ab/q], the Montgomery reduction algorithm approx-
imates a small factor ¢ such that ab — tq divides 2". Then the result is computed as
¢ « (ab—tq)/2", which is where the factor 27" appears. The formula for ¢ is described
by

t = [{abl, - R,

where R =g~ ! (mod 2").

25

2 Preliminaries

Correctness. For the algorithm to be correct it must hold that tg = 0 (mod q) (trivial),
and it must be that ab — tq is divisible by 2", because otherwise the division would be
undefined (or it would add rounding error, depending on your definitions). Fortunately,
this follows directly from the value we chose for R, as R was chosen such that R-q = 1
(mod 2"):

ab—tq=ab—[[ab], - R],q
= ab— [[abl, - Ral,
ab— [[abl, - (2" + D],
ab — [ab],, which is divisible by 2".

O

Usefulness. The bounds of ab are [—2""1q,2"7'q), as is specified as a requirement of
the algorithm inputs. The bounds of tq are also [—2"_1q, 2”_1q), because t is bounded
by —2""! and 2""! through the [_], bit selection operation. Therefore, after the last
division by 2", ¢ is bounded by:

abbound tqbound abbound tqbound
2n—lq + zn—lq 2n—1q + 2n—1q
- <c<
2n 2n
+ +
979 <c< q+q
2 2

—q<c<q

Just like the outputs of the Barrett reduction algorithm, the Montgomery reduction

algorithm’s outputs are always between —q and q. O

Cost. From both algorithm listings, you can see that, in terms of operation count, the
primary difference between Barrett and Montgomery modular multiplication is that
Barrett reduction uses one 2n-bit multiplication aside from two n-bit multiplications,

whereas Montgomery only uses three n-bit multiplications. The actual difference in

26

2.5 Cortex-M3 and Cortex-M4

performance between both algorithms depends on whether the platform provides
native 2n-bit multiplications. If that is the case, then both algorithms are roughly
equally fast. However when the platform only supports n-bit multiplications, then
the 2n-bit multiplication will have to be implemented using four n-bit multiplications.

In that case, Montgomery reduction is undeniably faster.

2.4.3 Montgomery multiplication with precomputed constants

Often when we are computing modular multiplications, one of the operands is known
at compile-time, i.e., it is a constant. In this case, we can erase the extra 27" factor
by multiplying the precomputed operand with 2" before using it as an input to the
multiplication algorithm. When we do this we do not have to recover c from the
Montgomery domain, because ¢ = 27"*(2"ab) = ab. This optimized version of the

Montgomery multiplication algorithm is listed in Algorithm 2.8.

Algorithm 2.8: Signed Montgomery modular multiplication of ¢ < a - b (mod q)
where a is a constant

input: a,b, g, n with —2""1q < ab < 2" g

output: ¢ = ab (mod ¢) and —g <c < g

let: R = ¢! mod *2" and a’ = 2"a mod *q

1. t < [a-b]" > n-bit multiply
2Ty«t-q > n-bit multiply
3¢ [T} = T,]"

4: returnc

2.5 Cortex-M3 and Cortex-M4

The implementation work in this thesis focuses heavily on the Arm Cortex-M3
[ARM10a; ARM10b] and Arm Cortex-M4 [ARM11; ARM20] microarchitectures. The
variety of embedded computing architectures is enormous, but implementation char-
acteristics are hard to compare across different kinds of architectures, as each has
their own particular strengths and weaknesses. In order to facilitate apples-to-apples
comparisons of post-quantum crypto implementations, NIST requested the evaluation
of schemes (see Section 1.2) to be narrowed down to as few platforms as possible.

27

2 Preliminaries

They chose Cortex-M4, which is a reasonable platform to stick to because it is often
included in chips that are considered constrained, but not too constrained as to imme-
diately disqualify all of the “bigger” candidates.? However, in the embedded industry,
Cortex-M4 is often still considered a relatively powerful architecture. Therefore, we

also consider Cortex-M3, a somewhat smaller (and cheaper) alternative to Cortex-M4.

2.5.1 The Armv7E-M Thumb architecture

Arm Cortex-M4 implements the Armv7E-M Thumb instruction set architecture (ISA),
and Cortex-M3 implements the Armv7-M Thumb ISA. The ISAs are very similar,
with the Armv7E-M architecture being slightly more powerful than the Armv7-M
architecture. Both ISAs are in-order, and feature a 3-stage (fetch-decode-execute)
pipeline. Each ISA features 16 32-bit registers (r0-r15), of which 2 are reserved for the
program counter (r15) and the stack pointer (r13), leaving 14 usable general-purpose

registers.

32-bit to 64-bit multiplication. Multiplications are the core operation of crypto-
graphic implementations. Aside from instructions for 32-bit to 32-bit multiplication
(mul, mla, mls), both the ISAs support instructions for native 32-bit to 64-bit multipli-
cations (umull, smull, umlal, smlal). On Cortex-M4, all of these instructions execute
in a single cycle, making them very suitable for crypto implementations. However
on Cortex-M3, these “big” instructions have an execution time that is dependent on
the instruction operands [Gro15], varying from 3 to 7 cycles per instruction. This
makes them unusable for computing on secret data because that kind of use would be
vulnerable to timing side-channel attacks [GOPT09] (see Section 2.6.1). Therefore on

Cortex-M3, we can only use these instructions when working with public values.

SIMD instructions. On top of the powerful 32-bit to 64-bit multiplication instruc-
tions, the ARMv7E-M ISA provides SIMD instructions like smlad or uadd16. These
have been shown to achieve significant speedups for NTT-based polynomial multipli-
cation [ABCG20; BKS19] and Toom-Cook-based polynomial multiplication [BKV20;
KBSV18; KRS19] on the Cortex-M4.

2This happened in the email conversation with the subject “On Recommended Hardware” on the pqc-
forum mailing list of 5-6 February 2019.

28

2.5 Cortex-M3 and Cortex-M4

Inline shifts. A neat feature that the Armv7 architectures implement is that Thumb
data-processing instructions can inline shift or rotate their second operand before use.
This feature is often referred to as the barrel shifter.> For example, the instruction
add ro, ro, rl, 1sl #2 shifts the contents of r1 two positions to the left, before
adding them to ro. The shift operation adds no overhead; all instructions use the

same amount of cycles whether the shifter was used or not.

Floating-point unit. The Cortex-M4 architecture features an optional floating-
point unit (FPU). The presence of an FPU is often denoted by a suffix F in the archi-
tecture name (e.g., Cortex-M4F). Even if our code does not use any floating-point
operations, the FPU can still be useful, because it provides 32 additional registers
(s0-s31). One cannot use these registers directly for general-purpose data processing.
However, moving between general-purpose registers and FPU registers is faster than
accessing memory (1 cycle instead of 2 cycles). This is why, in Chapter 5, we use the

FPU registers to store some of our local variables.

2.5.2 STM32F4 Discovery

As mentioned, the Cortex-M3 and Cortex-M4 architectures are implemented on a
plethora of chips and development boards. At the start of the NIST competition, the
pgm4 [PQM4] project ported Cortex-M4 implementations of all the NIST competition
candidates to the STM32F4 Discovery board. Because of this, the STM32F4 Discovery
board [STM20b] has evolved to be the de facto development board for the evaluation
of post-quantum crypto schemes on Cortex-M4. As such, it is also the main board
used for the evaluations in this thesis. The board features an STM32F407VGT6
microcontroller [STM20a], which has 1 MB of flash space, and 192 KiB of SRAM (of
which 64 KiB is faster “core-coupled” memory). Its core runs with a maximum clock
speed of 168 MHz. The chip includes the optional Cortex-M4 FPU and includes a
hardware true random number generator (TRNG). It does not feature any kind of

acceleration for cryptographic primitives.

31t is, presumably, implemented using a barrel shifter.

29

2 Preliminaries

2.5.3 Arduino Due

Aside from Cortex-M4 evaluations, we also evaluate Dilithium’s performance on
Cortex-M3. For Cortex-M3 we use the Arduino Due development board. This board
is based on the ATSAM3XSE IC [Atmel15] which contains a Cortex-M3 core. The
chip comes with 512 KiB of flash space, and 96 KiB of homogeneous SRAM; and its
core’s maximum clock frequency is 84 MHz. Just like the STM32F4 chips, it does not
feature any acceleration for cryptographic primitives. It does, however, also feature a

hardware true random number generator.

2.6 Software & measurements

2.6.1 Side-channel resistance

Our implementations are only considering timing side-channels [Koc96], i.e., we
provide constant-time code that avoids leaking secret data through the execution time
of operations on the platform. Formally, constant-timeness is based on the notion
of computational probabilistic non-interference [BP02]. In practice, whether code is
constant-time is highly dependent on both the platform and the leakage model. In
the case of this thesis, all code that is described as constant-time is implemented

according to the following rules:
1. All values in the algorithm’s execution are public or secret.

2. For all atomic operations, the output is secret if any of the inputs is secret, and

public if all of the inputs are public.

3. Values that are secret are not used as conditions in conditional branching

operations.

4. Values that are secret are not used as address operands for operations that

interact with memory.

5. Values that are secret are not used as operands for operations from which it is

known that their execution time depends on that operand.

6. The Declassify(s) operation takes a secret variable s and designates it as public.

30

2.6 Software & measurements

7. Variables are only declassified when they are of no use to an attacker. In other
words, for all % adversaries that get all public values as input, and & is the
adversary that breaks the scheme (i.e., that of Definition 2.3, 2.4, or 2.5), values
are only declassified when Adv(%) < Adv(&/) remains satisfied.

For certain use cases one may want to consider to also protect against more powerful
attacks like power analysis attacks, e.g., using masking. There exists work in the
literature that masks modified versions of Dilithium [MGTF19; PPRS23], and there
are (at the time of writing) only few masked Dilithium implementation that conform
to the Dilithium specification [ABCH*23; CGTZ23]. More research is still needed to
determine the best ways of masking Dilithium in implementations. However, that
topic is researched in parallel to our research, and masking techniques have been left

outside of the scope of this thesis.

2.6.2 Benchmarks

Cortex-M4. Our Cortex-M4 benchmarking setup is based on pqm4 [PQM4]. As
such, we benchmark all our Cortex-M4 implementations on the STM32F407 Discov-
ery board. It was clocked at 24 MHz to eliminate flash wait states when fetching
instructions or data from flash. For benchmarking the algorithm latency, we used the

SysTick counter clocked from the same clock as the core.

Cortex-M3. The Cortex-M3 speed measurements were done on the Arduino Due
board which uses the ATSAM3X8E microcontroller. The ATSAM chip was clocked
at 16 MHz, which results in a flash access time with zero wait-states. The algorithm

latencies were measured using the internal cycle counter (DWT->CYCCNT).

Memory usage. On both architectures, the memory usage was measured by filling
the stack memory with dummy values, then executing the algorithm, and afterward
measuring the amount of dummy-value bytes that were overwritten during the
execution (no static or heap memory was used). By convention, in the memory
measurements, space reserved for input and output values (i.e., buffers for keys,

messages, and signatures) is not counted.

31

3 Dilithium

3.1 Lattice-based cryptography

As we saw in Section 2.3.1, all cryptographic constructions are based on some hard
mathematical problem. The Dilithium signature scheme is based on the MLWE
and MSIS hard problems in lattice cryptography. Both problems are “hard”, i.e., we
presume that the advantage of an adversary solving one of these problems is very
small. Their definitions are provided by the Dilithium specification [DKLL"20], but

for completeness I will provide them here as well.

Definition 3.1 (AdV]Iz‘gl:bNE). For integers k and £, and a probability distribution D :
R, — [0, 1], the advantage of an adversary of solving the MLWE problem over R is

Adv;c/,\fl)‘L\)ME(szi) :=|Pr [b = true | A ﬁ Réxf;t ﬁ Ré;b «— A (A, t)] -

Pr [b =true | A <$¥ Rt s) « Dbysy « DN b« of(A, Asy + sz)] ‘
(3.1)

Definition 3.1 describes the Decisional Module Learning With Errors (MLWE) prob-
lem, based on the LWE problem proposed by Regev in 2005 [Reg05]. It declares that
if some adversary &/ exists which is able to distinguish between MLWE pairs (A, t) of

the form

$
A« qum’,t «— Asy + sy,

with s; and sy sampled from the distribution D; and random pairs (A, t) of the form

Al REt & RE,

33

3 Dilithium

then its advantage is equal to Adv,/z\fl"g).

Informally speaking, we assume that both kinds of pairs “look the same”. From
just A and t alone, we presume no adversary can make out which ts were generated
using the t < As; + s, formula, and which ones are really random. If (contrary to

our beliefs), there exists some & that can solve the problem, then its advantage is
described by Adv,t?gljz)NE (o).

Definition 3.2 (Adv,/:j‘f)l,s). The advantage of an adversary & of solving the MSIS

problem over Ry is

AV (at) :=Pr [[1A]-y=0and0< lylo <yl A< ROy g(A)] . (3.2)

Definition 3.2 describes the Module Shortest Integer Solution (MSIS) problem, based
on the SIS problem from the Ajtai paper of 1996 [Ajt96]. It defines the advantage of

an adversary & that can find some non-zero vector y which
- satisfies [I|A]-y =0; and
o is small, i.e., |y]e < 1.

The Dilithium specification also describes the SelfTargetMSIS problem. SelfTarget-
MSIS is particularly relevant for security analysis of Dilithium in the quantum random
oracle model (QROM) [BDFL*11]. However, it is not relevant in the classical setting,
because, in the regular random oracle model (ROM) [BR93], SelfTargetMSIS can be
reduced to MSIS. We will not cover the QROM security of Dilithium, and as such the
SelfTargetMSIS problem is outside the scope of this thesis.

3.2 Dilithium simplified

The MLWE problem can be used to construct cryptographic lattice signatures [BG14;
GPV08; Lyul2]. We will provide some intuition on how the confidentiality of the
secret key and signature soundness follows from MLWE and MSIS. Note that this
section does not attempt to prove the security and soundness of Dilithium. Multiple
papers have been dedicated to the security analysis of the scheme (e.g., [BBDD*23;
DFPS23; KLS18; LS15; Lyu09; Lyu12]), and a complete separate book could be written

34

3.2 Dilithium simplified

about it. However, I will do my best to provide a high-level overview of the scheme’s

security, and to refer to the relevant literature when applicable.

Before diving into the full Dilithium scheme, let us first look at the simplified

version that I have listed in Algorithm 3.3. It follows all of the same principles, but it

leaves out the details that are irrelevant for security.

In this section, all parameters (g, 7, y1, yo2, b, etc.) will be left undefined. I recognize

that this leads to a somewhat abstract or even nebulous description of the scheme.

However, their definitions are not yet needed at this point. Just know that they are

scalar constants, and their concrete values will be listed in Section 3.3.3.

Al

gorithm 3.3: Simplified version of Dilithium.

1

2:
3:
4:
5:
6:

7

10:
11:
12:
13:
14:
15:
16:

17:

: function KeyGen

§1 < S,;

Sp < S,];

AL R

t:= ASl + 8y

return sk := (A, sq,87), pk := (A1)

: function Sign((A, s1,s3) := sk, M)

y ‘i 5)2—1

w; := HighBits(Ay, 2y,)

¢ := HM,wq)

Z:=y+o0sg

rg := LowBits(Ay — csy, 2y,)

if |z|. = y1 — B then > z-check
return L

if |rgle = yo — f then > rg-check
return L

returno := (c,z)

: function Verify((A,t) := pk,(c,z) := o, M)
wi := HighBits(Az — ct, 2,)
return [[c =HM| w{)]] and [["Z"oo <n- .5]]

35

3 Dilithium

3.2.1 KeyGen

The key generation routine (KeyGen) generates a uniformly distributed k x £ public

matrix A with elements in R; = Zg[X]/[X" + 1]. It also generates two secret vectors

s1 i S,t;, N ﬁ S,]]c where S, is the set of polynomials in R with coefficients in {-7, ..., 7}.
We define sk := (A, sq,83) as the secret key, and pk := (A, t) is the generated public
key. A is included as part of the secret key, because it will be necessary in the
generation of signatures (Section 3.2.2). However, only s; and s, need to remain
secret.

We can intuitively see how the secrecy of s; and s is provided by the MLWE
assumption: if the adversary is provided an oracle that, given A and t, provides
information about s; and sy, then they can use that to solve instances of the MLWE

problem.

3.2.2 Sign

In the signature generation algorithm, the HighBits routine is first used. It is defined

as follows.

Definition 3.4 (HighBits, LowBits). HighBits and LowBits uniquely decompose a

vector X such that
a - HighBits(x, a) + LowBits(x, @) = x and |LowBits(x, 2a)|s < @ (3.3)

Using the HighBits function, we compute the signature generation algorithm
in multiple stages. First, the signer samples a random nonce (or mask) y with all
coefficients smaller than y;, and from it computes the commitment wy : = HighBits(
Ay, 2y,). Then the commitment is, after concatenation with the message, input into a
random oracle H, which outputs a challenge polynomial c. The signer then computes
the response z := y + cs;. After the response is computed, the signer will do two
checks that are necessary to ensure that the scheme is secure.

In the z-check, the signer checks that ||z|, is smaller than y; — f, where fis chosen
such that |cs{|, < B This check ensures that, when output, z does not leak any
information about s;. In the ry-check, the signer will check that HighBits(Ay, 2y;) =
HighBits(Ay — csy, 2y,), and that ry does not leak any information about sy. This

check also ensures that the commitment w will be recoverable from z during the

36

3.2 Dilithium simplified

signature verification. If any of these checks fail, the signature generation is aborted.

After all these steps are done, the algorithm outputs the signature o := (c, 2).

3.2.3 Verify

To verify o, the verifier first recovers the commitment by computing w} := HighBits(
Az —ct, 2y,). Then the verifier can use wj to compute ¢’ := H(y | w}). The first check
in the verification ensures that ¢’ = c¢. The second check ensures that z is small, which

is required because the MSIS assumption only holds if z is small (see Definition 3.2).

Correctness. For the correctness of the first check in the signature verification, we
first show that wi = HighBits(Ay — csy, 2»):

w1 := HighBits(Az — ct, 2y,)
= HighBits(A(y + cs1) — c(As; + 83), 25)
= HighBits(Ay + Acs; — cAsy — ¢Sg, 2)5)
= HighBits(Ay — csp,2y5) =: 1y

To show that ry = wy, consider that r; # wy: if ry # Wy, this means that the
subtraction of csy from Ay has lead to a “carry” appearing in HighBits(Ay — css, 2y5).
When this carry appears, the corresponding coefficient (call it x) in LowBits(Ay —
cS9, 2y5) is “close to overflow”, i.e., |x| > y, — f. However, it was ensured by the
ro-check this is not that case, and as such r; must be equal to w;. Then, it follows
that H(M | w1) = HM | wy) = ¢

The correctness of the second check in the signature verification follows directly
from the fact that all candidate signatures with |z|,, > y; — f were rejected during

the signing algorithm. O

3.2.4 Security

As already mentioned, the security of Dilithium is complex and I will try to not
replicate the complete proof in this chapter. Besides, at the time of writing, some
discoveries are still quite recent [BBDD*23; DFPS23], which have impacted the secu-
rity proof of Dilithium. This section contains an intuitive impression of the security
analysis of Dilithium (i.e., not a complete one).

37

3 Dilithium

Canonical identification schemes (ID). The Dilithium security argument con-
sists of multiple layers. At its core is a common canonical identification scheme
(ID) [AABNO02; GMRS5]. ID schemes consist of three steps: First, the prover (which
holds the secret key) produces and sends a commitment to the verifier (which, in the
case of Dilithium, is the value wy). After receipt of the commitment, the verifier sends
a random challenge back to the prover (c). Finally, the prover computes a response
(z) from the challenge. If z satisfies the checks described in Section 3.2.2, the prover
sends it to the verifier z; and otherwise it aborts. Using the prover’s public key, the

verifier uses the complete transcript (w1, ¢, z) to decide if the proof is accepted.

Fiat-Shamir-with-aborts (FSwA) and the random oracle model ROM. The
identification scheme (and its security proof) is transformed from the interactive set-
ting to a non-interactive signature scheme using the Fiat-Shamir-with-aborts (FSwA)
transform [Lyu09]. FSwA is based on the Fiat-Shamir (FS) transform [AABN02; FS87],
which replaces the generation of ¢ by the verifier with the computation ¢ := H(M|wy),
where H is a hash function modelled as a random oracle [BR93]. The difference be-
tween the FS transform and the FSwA transform is that the FSwA transform deals
with the aborting nature of the underlying identification scheme. The FSwA trans-
form achieves this by wrapping the aborting scheme in a rejection-sampling loop,
essentially retrying the signature generation algorithm until a good (i.e., non-leaking)
signature is found. For Fiat-Shamir-based schemes to be secure in the ROM, they
need to meet two core security properties': special soundness, and honest verifier

zero-knowledgeness.

Special soundness. The special soundness property is the property that provides un-
forgeability under no-message-attack UF-NMA. Special soundness is usually demon-
strated using the forking lemma [PS00]. In the Dilithium forking lemma, we first
assume that the MLWE problem (Definition 3.1) is hard. The hardness of MLWE im-
plies that all public keys (A, t) are cannot be distinguished from uniformly distributed
keys by the adversary. The forking lemma now uses the reprogrammability ability of
the random oracle to show that if we have a signing adversary &/ that takes only
public data as input, then we can construct a reduction %y, that can generate two

signatures (wy, ¢, z) and (wq,¢’,2’), with ¢ # ¢’. We derive solutions to the MSIS

! Apart from correctness (see Section 3.2.3), and an adequate min entropy of the commitment.

38

3.2 Dilithium simplified

problem from the values z — z’ and ¢ — ¢’. Because MSIS was assumed to be hard to
solve, this means that the scheme is UF-NMA.
Concretely, where 98, € and & are adversaries in each applicable game, the follow-

ing relation holds between the adversaries’ advantages:

UF-NMA MLWE MSIS
AdVsimplifiedDilithium (%) < Advie g™ () + Advi 7 AD)

where { := max{y; — f,2y, + 1}.

Honest verifier zero-knowledgeness. Honest verifier zero-knowledgeness (HVZK)
indicates that all signatures produced by the scheme are statistically independent of
the secret key. This property is important because otherwise, each signature would
provide the attacker with some information about the secret key.? In HVZK schemes,
adversaries that are provided a signing oracle that knows sk have no advantage over
adversaries that are provided a signing oracle that only takes public information
as input. And because there is no advantage, these two scenarios (i.e., games) are
equivalent. In this way, HVZK allows a security reduction from UF-CMA to UF-NMA.
ILe., if a Fiat—-Shamir based scheme is shown to be UF-NMA secure and HVZK, then it
is also UF-CMA secure.

Concretely, where of and % are adversaries against the applicable games, and € is

negligible, if the scheme is zero-knowledge, then

UF-CMA UF-NMA
AdV§impiifiedDilithium(Z) < AdvsimplifiedDilithium (%) + €

HVZK is usually demonstrated using a simulator &. This simulator is a subroutine
that generates simulated signatures that are statistically independent of real signatures
in the ROM. The Dilithium simulator is listed in Algorithm 3.5.

The simulated signatures are statistically independent of the “transcript” signatures
(output by a signing oracle). Therefore, we can swap out the signing oracle for the
simulator in the security game. Because of the ROM, the signature distributions are

not perfectly equal, so a security loss is incurred.®

2That scenario would be workable, but then we would have to either ensure that the secret key is not used
after too much information has leaked (like in [BDH11]), or we would have to ensure that (for each
signature) the amount of information that is leaked about the secret key is limited (e.g., in [BHHL*15]).
3See [BBDD" 23, Section 5] for concrete values.

39

3 Dilithium

Algorithm 3.5: Simulator for Dilithium signatures.

1: function S{((A,t) := pk, M)

2: loop

3 (c,z) <$— B, x S;fl_ e B, x S;‘;l_ s the set of all challenges and responses
4 r; := HighBits(Az — ct, 2y,)

5 rg := LowBits(Az — ct, 2y,)

6: if |roleo = y2 — f then > rg-check
7: continue

s R M) =

9: return o’ :=(c,z)

Strongness. At this point, the scheme is UF-CMA secure. However, in the Dilithium
specification [LDKL*20, Section 6.2.2], a short proof is included that shows that
Dilithium is SUF-CMA by (again) reducing the security to the MSIS assumption.

special soundness HVZK
(forking) (simulation)
B T A gy B vy
MLWE
MSIS
ROM

Figure 3.1: Structure of the Dilithium security proof.

Recap. Let us briefly recap the contents of this section. The structure of Dilithium
is based on canonical identification schemes. Using the Fiat—Shamir with aborts
heuristic, the scheme is transformed into a non-interactive signature scheme. The
security reduction of Dilithium consists of three steps (see Figure 3.1): Special sound-
ness is used to show UF-NMA security in the ROM, provided by the MLWE and MSIS
assumptions. Honest verifier zero-knowledgeness is used to show that (in the ROM)
the UF-NMA scheme is UF-CMA secure. Lastly, the (already assumed) hardness of
the MSIS assumption makes Dilithium SUF-CMA secure.

Throughout the security proof, a number of security losses are incurred, which are
all negligible in the security parameter. The concrete security loss of the complete

scheme has recently been reanalyzed and is summarized in [BBDD*23, Theorem 2].

40

3.3 Dilithium

3.3 Dilithium

The previous section described a simplified version of Dilithium. However, for effi-
ciency reasons, the real Dilithium scheme is a bit more complex. In Algorithm 3.17
you will find the main algorithm listing, while the running text contains the additional
functions and collections that are used in the scheme. In this section, we cover the

version of Dilithium that was submitted to the third round of the NIST competition.

3.3.1 Symbols and subroutines

Definition 3.6 (Ry). R, describes the main polynomial ring that is used. Ry is defined
as Ry 1= Zy[X]/(X" + 1).

Definition 3.7 (). S, denotes the set of all polynomials in Ry with coefficients in
(=, +77].

Definition 3.8 (§yl). Sh denotes the set of all polynomials in Ry with coefficients in
[y, +11)-

Definition 3.9 (B;). B denotes the set of all polynomials in Ry with exactly T coefficients
in{+1, -1}, and all the other coefficients 0.

Definition 3.10 (ﬁq). qu describes the NTT domain of Ry (and will be concretely defined
in Equation (3.7)).

Definition 3.11 (H). H is a cryptographic hash function that is modeled as a random
oracle with an output length of 256 bits. It is instantiated with SHAKE256.

Definition 3.12 (CRH). CRH is another cryptographic hash function, required to be
collision resistant, which is also instantiated with SHAKE256. It is different from H in
that its output is 384 bits long.

Definition 3.13 (ExpandA, ExpandS, and ExpandMask). ExpandA, ExpandS, and Ex-
pandMask each pseudorandomly sample polynomials uniformly from a seed. ExpandA
samples polynomials in IAZq, ExpandS samples polynomials in S,, and ExpandMask

samples polynomials in 5),1.

41

3 Dilithium

Definition 3.14 (SamplelnBall). The challenge ¢ that is produced by the hash function
on line 20 of algorithm 3.17 is a 256-bit bit-string. To convert this bit-string into an
element in By, it is used as a seed for a SHAKE256 instance. The destination polynomial c
is initialized asc 1= 1-X° + - +1-X""1. Then r bits are squeezed from the SHAKE256
instance to randomize the signs of the non-zero coefficients. More random bits are
squeezed and used for a Fisher—Yates shuffling algorithm [Dur64] that randomizes the
location of the 1 coefficients in c. The resulting polynomial is a polynomial that is

uniformly distributed in B;.

Definition 3.15 (PopCount). PopCount(x) returns the population count (or Ham-
ming weight) of x, i.e., the number of non-zero coefficients. PopCount(x) is computed
recursively from the elements of %, i.e., PopCount(x) = Y, PopCount(x;).
X€x
Definition 3.16 (MakeHint and UseHint). MakeHint(z,r, @) returns a hint bit h that
is 1 if HighBits(r, &) = HighBits(r + z, a) or 0 if both terms are equal. UseHint(h,r,)
uses the hint generated by MakeHint to recover the original value of r.
Together, MakeHint and UseHint satisfy

UseHint(MakeHint(z,r, 2y3),r, 2y5) = HighBits(r + z, 2y).

3.3.2 KeyGen, Sign & Verify

The key generation, signing, and verification algorithms are listed in Algorithm 3.17.
Even though the real Dilithium algorithm looks a lot more complex, it still follows
the same structure as the simplified algorithm that we saw earlier in Algorithm 3.3.

In the new version, the KeyGen algorithm now takes a single random seed { as
input. From that seed, three other seeds p, ¢, and K are sampled. p denotes the seed
which determines the value of A; ¢ determines the secret key vectors s; and sy; and K
is used during the signing algorithm to generate random ys. This tweak (generating
the keypair from a single seed) allows us to regenerate the secret key from { every
time when we are signing messages. This can be useful in cases in which a device’s
key storage space is limited, as {is just 32 bytes in size.

The computation of t = As; + s, goes via the number theoretic transform (NTT).
NTT-based multiplications are a very efficient method to multiply the polynomials in

Ry, which will be covered in more depth in Section 3.4. After t is computed, it is split

42

3.3 Dilithium

Algorithm 3.17: Dilithium signature scheme.

1: function KeyGen({ e {0, 1}256)

tre{0,1F" := CRH(p | t,)
return (sk := (p, K, tr, 51,85, 1), pk := (p, 1))

2 (pe.K) {0, 1 := H()

3: (s1.82) € S x SF := ExpandS(c)

4: Ac R := ExpandA(p)

5: t:=As; +s, > Compute As, as NTT (A - NTT(s,))
6: (t, 1) = ([t]d, [t]) > Recall that [_], and [_]d denote bit-selection (Sec. 2.2)
7:

8:

9: function Sign((p, K, tr, s, 85, t) := sk, M)
10: A € R := ExpandA(p)

384

11 p€{0,1¥” := CRH(tr | M)

12: rnd € {""}u {0, 1}"** := mn > Or rnd & {0, 1**° (see Section 3.3.4)
13: p' €{0,1F% := CRH(K | rnd | 1)

14: K:=0 > K is a 16-bit counter
15: loop > Precompute §; = NTT(s,), 8, = NTT(s,), t, = NTT(t,)
16: ye€ S~£1 := ExpandMask(p’ | k)

17: K:=k+1

18: w = Ay > Compute w := NTT!(A- NTT(y))
19: w, := HighBits(w, 2y,)

20: ¢e{0, 17" := H(u | wy)

21: ¢ € B, := SamplelnBall(¢) > Precompute ¢ := NTT(c)
22: z:i=y+c-s; > Compute cs; := NTT (¢ s;)
23: tp := LowBits(w — cs,, 2y,) > Compute cs, := NTT (¢ s,)
24: if |z|, >y; — B then > z-check
25: continue

26: if |ty =y, — f then > ry-check
27: continue

28: h := MakeHint(—cty, w — cs, + cty, 2y,) > Compute cty := NTT™'(¢ o ;)
29: if |ctyl, = ¥, or PopCount(h) > » then > Compression check
30: continue

31: return (z,h, ¢)

32: function Verify((p,t;) := pk,M,0)
33: A € R := ExpandA(p)
3¢: tref0,1F"” := CRH(pk) | M

384

35: pef0,1}7" := CRH(tr)
36: ¢ € B, := SamplelnBall(¢) > Precompute ¢ := NTT(c)
37: w,’ 1= UseHint(Az — ct; - 2%, 2,) > Compute as NTT (Ao —¢of; - 29)

33 return [¢ = H(u| w,)] and [lzl., <y, - f]

43

3 Dilithium

in two, with t; containing the “high bits”, and ty containing the “low bits”. This is part
of a public-key compression scheme that is implemented in Dilithium, whose details
are not really important. The key takeaway is that, even though t; is part of the secret
key, its exclusion from pk is only done to reduce the public key size. ty does not need
to remain secret for the security of Dilithium. Lastly, tr is a domain-separation value
that is precomputed during the key generation algorithm.

Moving over to the signature generation algorithm, we first precompute a batch
of values, such that they do not have to be recomputed during every iteration of
the rejection-sampling loop: A, 11, p’, S5, $3, fp. On Line 15, we enter the rejection-
sampling loop. Just as in the simplified version of Dilithium, we first generate a nonce
vector y. Via the NTT domain, we compute the commitment wy := HighBits(Ay, 2y,).
i | wy is hashed into the challenge bitstring ¢ This bitstring is used as a seed for
the polynomial representation of the challenge (c) with the SamplelnBall function.
csy and csy are computed via the NTT domain, and then the response z is computed.
After the main rejection-sampling checks (z-check and ry-check) pass, the core of the
signature generation has finished. From Line 28 and further, z, ¢ are public and could
be encoded into a signature. Lines 28-30 compute some auxiliary information into h
in order to help the verifier to verify the signature with only t;.

The verification routine again precomputes the values A, 4 and tr. It uses the
information in h to reconstruct wy without ty. Then it checks if the hash of u | wy

matches ¢, and it ensures that |z|,, < y; — f-

3.3.3 Parameter sets

Table 3.1 lists all of the Dilithium parameters based on the NIST competition require-
ments. In this table Dilithium{2,3,5} targets the NIST security level {2,3,5}. That is,
Dilithium2 targets a security level equivalent to finding a collision for a 256-bit hash
function; Dilithium3 targets 192-bit key search; and Dilithium5 targets 256-bit key
search [NIST16].

3.3.4 Randomized signatures

Although Dilithium signature generation is principally defined as a deterministic
algorithm, there exists a non-deterministic variant. In this variant, on Line 13 of

Algorithm 3.17, rnd is initialized with a random value, instead of the empty string

44

3.3 Dilithium

Table 3.1: Dilithium parameters

NIST security level Dilithium2 Dilithium3 Dilithium5
sk size [B] 2528 4000 4864
pk size [B] 1312 1952 2592

o size [B] 2420 3293 4595

n (ring dimension) @ 256 256 256

¢ (main modulus) ® 28 21341 2B _2B 41 28 _21349
(k,?) (dimensions of A) (4,4) (6,5) (8,7)

n (max coeff value of sq, sy) 2 4 2

7 (pop count of ¢) 39 49 60
B(=1-1) 78 196 120

v1 (max coeff value of y) 217 219 219

Y2 (max coeff value of wg andrg) (¢ —1)/88 (g—1)/32 (g—1)/32
d (bit size of ty) @ 13 13 13

o (max of hints set) 80 55 75
Pr[-reject]) 0.24 0.20 0.26
E[#iterations] © 4.25 5.09 3.85

x : Pr[#iterations > x] < 27128 (@ 332 406 296

(@) This value is the same across all parameter sets.
() Based on [LDKL*22, Equation 5].
(©) E[iterations] = > k- Pr[reject]k_1 - Pr[—reject] is the expected (mean of the)

=1
number of rejection-sampling loop iterations during the signature generation
algorithm.

(@ With probability (1 —2!%8), the rejection-sampling loop in the signature gener-

ation algorithm will take at most x iterations (computed as — IL)
og, Prlreject]

(""). This will result in different y vectors being generated for different signatures

over the same message.

In deterministic Dilithium, the Sign function does not need to be provided a strong
randomness source (which may be difficult on some embedded platforms), and it makes
it easier to test the correctness of generated signatures using established test vectors.
On the other hand, when a hardware RNG is present, randomized implementations
may far outperform their deterministic equivalents in terms of speed. More so, in
embedded implementations, SHAKE256 is sometimes more prone to side-channel

45

3 Dilithium

-y
y+csy
/1 depends on s,
58

1 0 Y1
coeff value

Figure 3.2: The distribution of z = y + cs; before the z-check (if cs; is assumed to be
randomly distributed in S;),).

leakage than the internal RNG. In these cases, we might favor randomized signature

generation.

3.3.5 Rejection sampling

Dilithium is based on FSwA, and as such, the signature generation algorithm is built
around a rejection-sampling loop. Let us zoom in a bit more into the rejection sampling
property of Dilithium, as it is not very typical for signature schemes to be built around
rejection sampling.

The crux of Dilithium that leads to rejection sampling is the ability to construct
simulated transcripts with §. z vectors before the z-check depend on s, and ry vectors
before the ry-check depend on so. These dependencies violate the zero-knowledgeness
property, as no simulator can be constructed that generates simulated transcripts that

are statistically independent from real transcripts.

z-check. In the signature generation algorithm, the z = y + ¢s; addition “blurs” the
uniform value y, which is illustrated in Figure 3.2. After this addition (before the

check), the distribution of z is uniform between —y; + fand y; — S, but in the regions

46

3.3 Dilithium

—— before z-check
after z-check
2] reject zone

-n+pB 0 n-»~8

Figure 3.3: Probability distribution of z before and after the z-check, and the zone
where z coeflicients lead to an abort.

[-y1 = B.—y1 + Bl and [y; — B,y1 + B) the probability ramps up and down. More
importantly, in these regions the probability distribution also depends on cs;

To overcome this, the z-check is added. The z-check cuts off the ramps from both
sides of the probability distribution of z. This leaves a z vector with all coefficients
uniformly distributed in (—y; + f,y; — B) as depicted in Figure 3.3 (i.e., z is uniform
in S){:l_ ﬁ) which can easily be simulated by &.

ro-check. The ry-check has a similar function, as it ensures the zero-knowledgeness
of ry. In Algorithm 3.3, r := w — ¢sy, which is recovered during as r = Az — ct. For
valid signatures it holds that r; = wy, therefore the verifier and adversary also know
r —ry = rg = LowBits(w — csg, 2)5).

Recall from Section 3.2.3 that the addition of csy did not lead to any “carries” in
the high-bits part of r, because otherwise w; would not equal r;. However, this
means that if a coefficient of LowBits(w — csg, 2),) is close to %5, this means that that
coeflicient in csy is small. As such, coefficients close to +y, depend on cs,.

Indeed, the shape of the probability distribution of ry | (r; = wy) is similar to that of
y + csq in Figure 3.2. Conversely, we cut off the same ramps from the edges, similar to
the action depicted in Figure 3.3. This leads to a rg vector that is uniformly distributed
in S)’fz iy which is simulatable by &.

47

3 Dilithium

Declassifying the branch condition bit. In Section 2.6.1, we mentioned that we
do not branch on values that are secret. However, before the checks, both z and ry are
secret vectors. In order to reject the signature if one of the vectors exceeds the norm
bound, we need to Declassify them first. This is done on a coefficient-wise basis. That
is, for each coefficient it is determined (in constant-time) whether they exceed the
bound, which will result in a bit b € {true, false}. This bit is declassified, after which

the declassified bit is used as the conditional for the subcheck for this coefficient.

Practical implications. As described, after aborting on an “incorrect” signature,
the signing algorithm keeps generating new candidate signatures until one of them
passes both checks. The acceptance probability is constant and listed in Table 3.1
under the label Pr[-reject].

Because of the rejection-sampling loop, the signing algorithm has a probabilistic
runtime. Every loop iteration the algorithm might finish, leading to a geometrically
distributed number of loop iterations, as illustrated in Figure 3.4. This leads to an
algorithm that may, under very unlucky scenarios, take a long time to execute. For
example, on average once every 22° (= 1 million) executions, Dilithium3-Sign will take
at least 64 iterations to execute. This bad “worst-case” performance is a significant
weakness of Dilithium, and it might pose a problem for real-time applications.

Furthermore, we cannot use the convention of reporting our software speed bench-
marks by median, because that convention is based on the assumption that an algo-
rithm always takes the same time to execute (with all deviations being attributed to
noise produced by the platform). Instead, for Dilithium we report speed benchmarks

using the average run-time.

3.4 The number theoretic transform

Schoolbook multiplication. Apart from computing Keccak permutations, most
of Dilithium’s run-time is occupied by multiplications in Rq.4 The naive method of
computing the product of two polynomials a and b is to use the Schoolbook method.

That is, we compute

‘In Chapter 4, on Cortex-M4 about 80% of signature verification is Keccak, and of the other 20%, about
70% of functions contain arithmetic in R.

48

3.4 The number theoretic transform

100% 1=
v Dilithium2
. e Dilithium3
= I A Dilithiums
Al °
wv
g I,
S 50%
8 1e
£ e
& 25% - 1°¢.
1 Y%
10% - X Y ; ° o
: : : IX§g * feee
1 5 10 15 20

Figure 3.4: Expected percentage of Sign executions that needs at least ¢ rejection-
sampling loop iterations.

@-by= Y abj (3.4)
i+j=k
However, our ring R, is Z,[X]/(X"+1), so when we take into account the reduction
of the product into an (n — 1)-degree polynomial, we get

(@by= Y ab- > abs (3.5)
i+j=k,i+j<n i+j=k,i+j>n

Using this method, for every coefficient in the product, we need to do n multiplica-
tions of coefficients. Because we need to do this for n coefficients in the product, this
results in a multiplication complexity of O(n?). For Dilithium, which has a not-so-
small n = 256, this results in very slow Schoolbook polynomial multiplications.

In order to make the Dilithium scheme faster, the Dilithium scheme is heavily
tuned to enable faster polynomial multiplications through the use of the number
theoretic transform (NTT). Using the NTT, the polynomial multiplication complexity
in Dilithium is reduced to O(nlogn).

49

3 Dilithium

The number theoretic transform is an application of the Fourier transform applied
to finite fields [Fid72; Pol71]. It works by choosing a polynomial ring such that
multiplication becomes analogous to vector-convolution of the coefficient vectors.
Now the convolution theorem applies, which states that where @ = NTT(a) and
b=NTT(b),

a-b=NTT '(@a-b). (3.6)

With this new method NTT-based method of multiplying polynomials, the com-
plexity is dominated by NTT and NTT~!. Fortunately, just as with regular Fourier
transforms, we can apply the fast Fourier transform (FFT) [CT65] to implement NTT
and NTT™! in O(nlogn). Now the full multiplication is implemented in O(nlog n).

Splitting R, using the CRT. The Chinese remainder theorem (CRT) allows us to
split R, into two smaller rings. The CRT (generalized to rings) considers a list of k
polynomials ¢; modulo some other polynomials m; which are all pairwise coprime.
Now let M be the product of these moduli, i.e., M = my --my. Then every list of

polynomials ay, ..., a; describes exactly one polynomial A mod M.

The polynomial modulus in R; is M = X?56 + 1. We find that M can be factorized
into m; = X2 — ¢, and m, = X128 + {,, where (. is the kth primitive root of unity
modulo g. In this situation the CRT states that all polynomials modulo X?°® + 1 can
be represented as two polynomials modulo X'?® — ¢, and X'28 + ¢, respectively. Or

in other words,

Zo[X1/(XP0 + 1) = Zo[X] /(X2 = §) x Zo[X] /(X2 + &),

Together, Zq[X]/(X128 —{,) and Zq[X]/(X128 + {y) form a residue number system
(RNS) for R;. As such, the addition and multiplication in R; can be implemented
by doing those same operations on each of the split rings independently. This does
not impact the speed of addition, as we needed 256 coefficient additions before
splitting, and after splitting R, we still need 256 coefficient additions. However for
multiplication, the amount of coefficient multiplications has been reduced from 2562
to 2 - 1282. Using this RNS, the number of base multiply operations has been reduced
by a factor of 2.

50

3.4 The number theoretic transform

Recursing down. From here, we can split up the ring system further by factoring
X128 — ¢, and X'28 — ¢,. This works, as

X128 - 1y = (X = (X + &), and
X1 4g, = (X =)X +).

A pattern exposes itself to us here. A polynomial (X* - {p) factors into (X /2% &p)-
And, as —1 = {, a polynomial (X* + {p) factors into (X% {4l2p)- So, after another
layer of splitting, we get an even more granular factorization of X20 + 1:

(X0 — (X + L)X — (X + &)

We can keep splitting these modulus polynomials until we are down to the last {j
value, which is {51,; the 512th primitive root of unity. Because it is the last { value,
we will call this one { from here on°. In the end, we end up with the factorization of
(X% 4 1)

(X = DX+ DX =X+) (X = T2+ TPX =)X+ 79)

Correspondingly, we have constructed a ring system of 256 rings (with all moduli
of degree 1) that is isomorphic to R;. We will call this ring system Ry:

Ry= ZX1/(X =) x Z[X1/(X + D) x Z[X]/(X = ") x Z[X]/(X +) x -
XTI XT/(X =)X Z X1/ (X + T) Zy[X1 /(X = PP Z[X1/ (X +5°) (3.7)

During each of these splits, we reduce the number of coefficient multiplications in
a polynomial multiplication by a factor of 2. After n layers of splitting, the updated
complexity of polynomial multiplication is @(n). This follows from intuition: after n
layers, we end up with n polynomials of degree 0. Each of those is multiplied using a

single coefficient multiplication.

The forward transform. Building on the construction from the previous para-
graphs, we can construct an efficient mapping from R, (the “time” domain) to ﬁq (the
NTT domain). To transform a polynomial a € Z[X]/(X 2Y— %) one layer towards the
NTT domain, we essentially reduce it modulo Zg[X]/(X? — 2) and Z[X]/(X” + z):

5The rule for computing values from {is &, = £°1%/%,

51

3 Dilithium

a; = amod (XY —z)
(3.8

ag = amod (X7 + z)
As an example, we take the first split that transforms a polynomial a € Z,[X]/ (
X%6+1) into two polynomials (ar, ag) € Zq[X]/(X'?® —128)x Z,[X] /(X128 + {128),
Let us first look at a;. We need to take all the “top” coefficients q; where i > 128
and reduce them modulo X'?® — {128, Because X128 = {!?% we know that g; X' =
a1 X17128 S0 to get rid of the top coefficients, we multiply them with 1?8 and add

them to the coefficient that is 128 spots further down. This results in:

ap, = (ag + {ayag) + (a1 + {1agge) X + (ag + {8ay30) X% + (3.9

Now let us look at ag. In this case the reduction polynomial has a positive {128
term, instead of a negative one. So in this case, because X'28 = —{128 we multiply
with =128 instead of 1%3:

ag = (ag — {?8ayp8) + (a1 — {*8a129)X + (@ — {1 Bay30) X2 + - (3.10)

Both formulas can be applied in parallel in a coefficient-wise fashion. The benefit is
that, for every coefficient, we only need to compute each multiplication g; - {2 only
once. Then, after respectively adding and subtracting, both reductions are computed

using only 128 coefficient-wise multiplications.

The base operation that maps a pair of (, a;112g) coefficient to (ar ;, ag;) is called a
butterfly operation. This particular butterfly (that of the forward transform), is often
called the Cooley-Tukey (CT) butterfly [CT65].

The butterfly operation is the central element of the fast Fourier algorithm and can
be depicted using a “butterfly diagram”. It is called a “butterfly” because, with a bit of

imagination, you can see a butterfly in its arrows.

The inverse transform. Using the forward transform, we can relatively easily
construct the inverse transform. Let me illustrate this for the example that we covered
in the previous paragraph (Equations (3.9) and (3.10)). After removing some of the

clutter, these equations show the following butterfly operation:

52

3.4 The number theoretic transform

ax k+128

X «— {128 (twiddle factor)

| I

ar k ag k

Figure 3.5: Diagram of the Cooley-Tukey butterfly for the first layer.

_ 128
aro = ap + { “®ajog

_ 128
dro = ap — {*Cagg8

In the inverse butterfly, our inputs are ay ; and aj o; and we need to find ay and a;g.

First, we add the equations together to find a formula for ay:

_ 128 128
aro +ago = (ay + L *Faygg) + (ag — *aizg)
2(10 = aL’O + aR,O

ap = 27 (a9 + agy)

Now, we take the difference of the equations to find a formula for a;,g:

53

3 Dilithium

aﬁ@ - aﬁ% = (g5 + {%ayz8) — (95— {*Bayzg)

1 1)
20'%ay58 = ag’g ~aRo

aypg = 2717128 (aﬁg - “g,()))

The reverse butterfly operation looks similar to the forward operation and this
one is usually called the Gentleman-Sande (GS) or Sande-Tukey butterfly [GS66].
Its butterfly diagram is listed in Figure 3.6. We observe however that an extra factor
271 was introduced.® That normalization factor 27! is the same in every layer, so
we can accumulate this factor for every layer into a single multiplication with 27¢,
where € is the number of NTT layers. Even though it does not matter when the 27
normalization factor is factored in, most implementations apply the normalization at
the end of the inverse transform.

2a 2011128

! !

X — {7128 (twiddle factor)

ar k ag k

Figure 3.6: Diagram of the Gentleman-Sande butterfly for the last layer.

Polynomial multiplication efficiency. For both the forward, as well as the inverse

transform, O(n-{) operations are needed to compute the transformed representation of

This factor does not come out of nowhere. It is similar to the normalization factor that we find in the
common formula for the inverse discrete Fourier transform.

54

3.4 The number theoretic transform

a polynomial. Hence, a full polynomial multiplication, i.e., NTT"Y(NTT(a) - NTT(b))
is O(n -) as well. This is a lot faster than the O(n?) complexity for the Schoolbook
method, which highlights the importance of the NTT in Dilithium.

The NTT and FFT. The “(inverse) number theoretic transform” refers to the math-
ematical mapping that we just covered. The “fast Fourier transform” refers to an
implementation of that mathematical mapping. Indeed, the FFT is not the only al-
gorithm that implements the NTT. One could also express the (inverse) NTT using
matrix multiplication, as described in one of [Gre20; Kan22], even though it would
not make sense from a performance perspective.

Usually, the FFT algorithm and its inverse are called just called the “FFT” and
“inverse FFT” algorithm. However, due to the vast literature on the subject, and the
appropriation of the algorithm by the cryptographic community, multiple synonyms
exist. For example, the (forward) FFT is also known as the “Cooley-Tukey (CT)
FFT”, or the “decimation-in-time (dit) FFT ”. Conversely, the inverse FFT is also
known as the “Gentleman-Sande (GS) FFT”, the “Sande-Tukey (ST) FFT”, or the
“decimation-in-frequency (dif) FFT”.” Because of the tight relation to signal processing,
the untransformed data is said to be in the time domain (R;). The transformed data is

said to exist in the NTT domain or the frequency domain (ﬁq)

Incomplete NTTs. We mentioned earlier that a 512th primitive root of unity must
exist to execute the NTT modulo g, which is the case for Dilithium. While this is true,
it is still possible to execute an NTT for ¢ < log, n layers. We call this transformation
an incomplete NTT. When computing polynomial products with an incomplete NTT,
we apply some of the NTT layers, and then use the Schoolbook (or some other)
method, to multiply the base polynomials. This idea is used in many implementations,
e.g., when the modulus does not support an NTT on log, n layers, or as a performance
performance optimization [ABCG20; ACCH"22; CHKS*21].

7 Gentleman-Sande refers to the authors of the paper in which the inverse FFT butterfly was first de-
scribed [GS66]. That paper however describes that version of the algorithm as the “Sande version”,
implying that it was invented by Sande alone. Decades later, Cooley published an essay in which he
clarified that the inverse algorithm was proposed by Sande while they were following one of Tukey’s
courses, leading to the Tukey-Sande denomination [Co087]. For consistency, we will only refer to this
algorithm as the Gentleman—Sande algorithm from this point on.

55

3 Dilithium

Twisting NTTs. Multiplying all coefficients g; of a € R; by powers of a 2n-th root of
unity &y, is called twisting [Ber01]. A twisting operation maps the polynomials from
Zg[X]/(X™ + 1) to Zg[X]/(X™ — 1), or back if the coefficients are divided instead.
Twisting during the NTT allows us to switch between kinds of butterfly operations,
i.e., we can use GS butterflies to compute the NTT, and we can use CT butterflies to
compute the inverse NTT. Twisting NTTs is a common optimization technique for
implementations of NTT-based lattice schemes [ADPS16; LN16; Sei18]. In Chapter 5
this is used to optimize the inverse NTT in Kyber and Dilithium.

Further reading. For more information about the number theoretic transform—
as it is used in Kyber and Dilithium—I highly recommend consulting the thesis of
Kannwischer [Kan22, Sec. 2.2.4, 2.2.5]. If you are looking for a more fundamental
source that also covers the Fermat Number Transform (see Chapter 5), I recommend
reading Nussbaumer’s book on the subject [Nus81, Chapter 8]. For more information

about twisting in the NTT, I recommend [Sei18, Section 2.1].

56

4 Fast Dilithium on Cortex-M3 and
Cortex-M4

4.1 Introduction

In the early stages of the NIST competition, there was still a scarcity of insight into
the performance of lattice schemes on small microcontrollers. There has already
been some efforts to optimize Dilithium for speed on the Cortex-M4, but the previous
work has surveyed only a subset of the algorithms (i.e., only signing) or parameter
sets (i.e., only for the NIST competition “recommended” security level). Moreover,
we feel that the Dilithium speed records could still be broken. Therefore, we see
a good reason to write a complete implementation for Cortex-M3 and Cortex-M4,
including all algorithms and parameter sets, using multiple different tradeoffs for
memory usage, and putting the resulting implementation in the public domain.

While the original work improves both the speed, as well as the memory usage of
Dilithium on both architectures, this chapter will cover only the improvements to
the speed. In Chapter 6, we will cover the memory improvements from this work
together with the more novel contribution of [BRS22]. At the time this research
was done, the NIST competition had advanced only to round 2. Therefore, unless
otherwise specified, all of this chapter’s contents refer to version 2 of the Dilithium
algorithm [DKLL*19].

Constant time & Cortex-M3. The Cortex-M4 architecture provides various ad-
vanced instructions for optimizing cryptographic schemes, which might be one of the
reasons why it gets so much attention from the cryptographic community. However
as we described in Section 2.5, the Cortex-M3 comes with one “feature” which does
appear interesting from an implementation and also from a side channel perspective:
Different from the Cortex-M4, it does not have a constant-cycle 32-bit multiplier

57

4 Fast Dilithium on Cortex-M3 and Cortex-M4

producing a 64-bit result, but only a variable-cycle one. Therefore, an implementation
of any scheme working on large (secret) integers compiled for the Cortex-M3 is most
likely going to leak information about these secret integers via timing side channels.
This has been shown to pose a problem for cryptographic schemes in preceding Arm
architectures [GOPT09]. It is particularly interesting for Dilithium, because of the
large prime modulus g = 8380417. If existing implementations for Dilithium are sim-
ply compiled for the Cortex-M3, they are very likely to be vulnerable to timing attacks
within the polynomial multiplication. In this chapter, we build a safe constant-time
implementation of Dilithium on the Cortex-M3. That is, the execution time of the

algorithm is invariant over all the secret values in the algorithm.

Contribution. The contribution of this chapter is threefold: First, we further
optimize the existing Dilithium implementation for the Cortex-M4 by switching to a
signed polynomial representation and optimizing more parts of the scheme. Second,
we present the first constant-time implementation of Dilithium on the Cortex-M3.
Finally, as a by-product, we provide Cortex-M3 implementations of the lattice-based
key-encapsulation schemes Kyber and NewHope. This, most notably, consists of
constant-time implementations of the NTT and NTT~! operations in those schemes.
The original work also contained stack consumptions and speed trade-offs for the

signing procedure of Dilithium, which will be covered in Chapter 6.

Code. The implementations of Dilithium, Kyber, and NewHope that are the result of
this work are in the public domain and can be obtained by following the instructions
described on page 10. The code is published and licensed under a CCO copyright

waiver.

Related Work. Previous speed records for Dilithium on the Cortex-M4 were set by
Ravi, Gupta, Chattopadhyay, and Bhasin [RGCB19] and were built upon an implemen-
tation by Giineysu, Krausz, Oder, and Speith [GKOS18]. A masked implementation of
a modified Dilithium on Cortex-M3 is presented in [MGTF19]. In that paper, Migliore,
Gérard, Tibouchi, and Fouque propose to use a power-of-two modulus instead of the
original prime modulus to allow for cheaper masking. However, strictly speaking, they
do not implement the Dilithium scheme as it was submitted to NIST. There is an ex-

tensive line of work for Cortex-M4 implementation of lattice-based key-encapsulation

58

4.2 Preliminaries

mechanisms [ABCG20; AJS16; BKS19; BKV20; KBSV18; KRS19]. Similar studies
exist on hardware implementations and instruction set extensions [AELN*20; BUC19;
MTKS*20]. Other lattice-based signatures have been implemented on the Cortex-
M4: Pornin presents a fast constant-time implementation of Falcon on the Cortex-
M4 [Por19]; In 2019, [GR19] presented a masked implementation of qTesla; More

recently, [WTJB*20] presented a hardware-accelerated implementation of qTesla.

Structure of this chapter. Section 4.2 introduces the lattice-based signature scheme
Dilithium and the peculiarities of the Cortex-M3 and Cortex-M4 relevant for this work.
In Section 4.3 we present some improvements for the Cortex-M4. Section 4.4 presents
the first constant-time implementation of Dilithium on the Cortex-M3. Section 4.5
presents the performance results for both implementations. In Appendix 4.A, we
provide performance results for Kyber and NewHope on the Cortex-M3 which are a
by-product of this work.

4.2 Preliminaries

Dilithium version 2. The research of this chapter was done on the older version
of Dilithium that was submitted to round 2 of the NIST post-quantum competition.
Therefore not all of the specification from Section 3.3 applies, as it covered the
version of Dilithium that was submitted to the third round of the NIST competition.
Fortunately, the structure of the keygen, signing, and verification algorithms is more
or less the same.

Most of the updates to the scheme are in the parameter sets. Round-2 Dilithium
had the parameter sets Dilithium2, Dilithium3, and Dilithium4. In the third round of
the NIST competition, the CRYSTALS team tweaked the scheme and all its parameter
sets and renamed the highest security level from Dilithium4 to Dilithium5. For both
versions of Dilithium, the parameter sets are listed in Table 4.1.

Functions. As a central building block, Dilithium uses the NTT and NTT! func-
tions which are used to implement efficient polynomial multiplication of a, b as
NTT I(NTT(a) - NTT(b)). The details of the Dilithium NTT are described in Sec-
tion 3.4, and between round-2 and round-3 Dilithium the use of the NTT is identical.

In addition, round-2 Dilithium uses a collision-resistant hash-function H directly

59

Table 4.1: Dilithium round-2 parameters versus Dilitium round-3 parameters

NIST round 2 NIST round 3
NIST security level Dilithium2 Dilithium3 Dilithium4 Dilithium2 Dilithium3 Dilithium5
pk size [B] 1184 1472 1760 1312 1952 2592
sig size [B] 2044 2701 3366 2420 3293 4595
n (ring dimension) 256 256 256 256 256 256
q (main modulus) 28 2B 41 2B -_2B 41 22-2B41 282841 282841 2B -_2B 41
(k,) (dimensions of A) (4,3) (5,4) 6,5) (4,4) (6,5) (8,7)
1 (max coeff value of sy, s3) 6 5 3 2 4 2
7 (pop count of c) 60 60 60 39 49 60
p(=1-1) 360 300 180 78 196 120
¥1 (max coeff value of y) (g—-1/16 (g—1)/16 (g—1)/16 217 219 219
Y2 (max coeff value of wy andrg) (¢—1)/32 (¢—-1)/32 (g—-1)/32 (¢q—1)/88 (¢—1)/32 (¢q—1)/32
d (bit size of t,) 14 14 14 13 13 13
o (max of hints set) 30 96 120 80 55 75

4 Fast Dilithium on Cortex-M3 and Cortex-M4

60

4.3 Improving speed on Cortex-M4

outputting a challenge polynomial roughly following the method as described in
Definition 3.14. Furthermore, round-2 Dilithium defines the seed expansion functions
ExpandA and ExpandMask; the rounding functions Power2Round, HighBits, and
Decompose and the hint functions MakeHint and UseHint as defined in Section 3.3.1.
Even though small differences may be present between the different Dilithium ver-
sions, for brevity we omit the details of those functions and refer the reader to the
Dilithium specification for round 2 [DKLL*19].

4.3 Improving speed on Cortex-M4

Our Cortex-M4 implementation is based on the Dilithium implementation by Ravi,
Gupta, Chattopadhyay, and Bhasin [RGCB19], which includes the NTT and inverse
NTT assembly implementation from Giineysu, Krausz, Oder, and Speith [GKOS18].

In Dilithium, the NTT and inverse NTT are computed iteratively and in-place, such
that no auxiliary vectors are required to store intermediate results. For computing
the NTT, Dilithium uses such an iterative Cooley-Tukey algorithm, which takes its
input vector in normal order, and outputs the vector in bit-reversed order. The inverse
NTT is implemented using an iterative Gentleman-Sande algorithm, which takes its
input vector in bit-reversed order and returns a vector in normal order. Note that
this has no effect on the polynomial-multiplication property (using coefficient-wise
multiplication), as described in Section 4.2.

In our implementation similarly to previous work, we precompute and store the
twiddle factors in flash. The twiddle factors are stored in the Montgomery domain
(with modulus R = 232), such that after the multiplication in the FFT butterfly, we can
use Montgomery reduction [Mon85; Sei18] to reduce the product modulo g.

After each level of the NTT and inverse NTT, the polynomial coefficients are grow-
ing in size due to additions and subtractions. Intuitively, we would apply a modular
reduction after each addition/subtraction operation. However, the coefficients in the
input polynomial are bounded by 2q (which is only 24 bits) and even if we do not
reduce mod q after each level, we will not overflow the 32-bit registers in which we
store the coefficients. Therefore, we reduce each coefficient mod q only once, at the
end of the NTT and inverse NTT. This technique of delaying the reduction is usually

referred to as lazy reduction.

61

4 Fast Dilithium on Cortex-M3 and Cortex-M4

When implementing the NTT and inverse NTT, we first unroll the outer loop
which iterates over the 8 levels of the NTT and inverse NTT. Furthermore, similar
to the merging technique in [GOPS13], we can merge two levels of the NTT and
inverse NTT on Cortex-M4 ({0,1}, {2,3}, {4,5} and {6,7}). Merging k layers here means
that instead of loading two coefficients, one loads the 2k coefficients which are used
together in k consecutive layers. By doing so one can eliminate the load and store
operations between the layers. Hence, the number of layers that can be merged is
bounded by the available registers. For our implementation, we achieved the best
performance by merging two layers, using 4 registers for the polynomial coefficients
and 3 registers for the twiddle factors.! As a consequence of the merge, the number

of store and load instructions is reduced by a factor of 2.

Lastly, the main difference that distinguishes our implementation from the one pub-
lished in [GKOS18] is changing the polynomial coefficients to signed representation.
When unsigned integers are subtracted from each other, it is possible for the result to
wrap around zero (when the result would be negative). To prevent this overflow, the
subtractions in the reference implementation are accompanied by an addition with
a multiple of ¢, pushing the results back into the positive domain. By switching to
the signed representation, the problem of negative overflows is fixed, and we do not
need this extra multiple-of-g addition. Therefore, switching to signed representation

allows us to eliminate all these additions throughout the code.

Algorithm 4.1: CT butterfly from [GKOS18]
input: po, p1, twiddle

output: po, p1

let: q=8380417, qinv=4236238847

umull tmpO, tmpl, pl, twiddle
mul poll, tmp0®, ginv

umlal tmpO, tmpl, pl, q

add pl, pO, q, lsl#1

sub pl, pl, tmpl

add pO, po, tmpl

!Accordingly, for k layers—if we do not reload or spill any value—we need 2 registers for the polynomial
coefficients and %k(k + 1) registers for the twiddle factors.

62

4.3 Improving speed on Cortex-M4

Algorithm 4.2: Our CT butterfly

input: po, p1, twiddle
output: po, pl
let: q=8380417, qinv=4236238847

smull tmpO, tmpl, pl, twiddle
mul pl, tmp®, ginv

smlal tmpO, tmpl, pl, q

sub pl, po, tmpl

add po, po, tmpl

Algorithm 4.3: GS butterfly from [GKOS18]

input: po, p1, twiddle
output: po, pl
let: q=8380417, qinv=4236238847

add tmpO, poO, g, lsl#8

sub tmp0O, tmpo, pl

add po, po, pl

umull tmpl, pl, tmpO, twiddle
mul tmpO, tmpl, ginv

umlal tmpl, pl, tmpO, q

Algorithm 4.4: Our GS butterfly

input: po, p1, twiddle
output: po, pl
let: q=8380417, qinv=4236238847

sub tmp0, poO, pl

add po, po, pl

smull tmpl, pl, tmpO, twiddle
mul tmp0O, tmpl, ginv

smlal tmpl, pl, tmpO, q

63

4 Fast Dilithium on Cortex-M3 and Cortex-M4

This is especially relevant for the NTT and inverse NTT implementations because
every butterfly operation has a subtraction. Algorithm 4.2 shows our improvements
to the CT butterfly in the NTT by [GKOS18] which is shown in Algorithm 4.1. For
the GS butterflies in the inverse NTT, the improvements are listed in Algorithms 4.3
and 4.4.

However, the overflow-mitigating additions were not only present in the NTT,
but also in the sampling of sq, s5, and y, polynomial subtraction, and unpacking
operations throughout the scheme. By switching to signed representation, we did not
only improve the performance of the NTT, but also of all the other routines listed
above.

Finally, in addition to improving the NTT and inverse NTT, we rewrote the point-
wise polynomial multiplication, uniform sampling of polynomials, and polynomial
reduction in assembly as these were the most expensive operations besides the already
optimized NTT, inverse NTT, and hashing operations using Keccak. We omit the

details, as they result straightforwardly from the reference code.

4.4 Fast Constant-Time NTTs on Cortex-M3

Our constant-time Cortex-M3 implementation of Dilithium is based on the Cortex-M4
implementation described in the previous section. To keep this section concise, we
only describe the differences here, which are mainly in order to make the implemen-
tation constant-time. When compiling the existing implementation [GKOS18] for the
Cortex-M3, we identify three functions that make use of the variable-time instructions
umull and umlal: NTT, NTT™!, and pointwise multiplication (). These functions are
the only ones that involve the multiplication of the 32-bit coefficients of polynomials.
When any of them operates on secret data, it will leak information through a timing
side channel.

Previous work by [MGTF19] suggests that the reference implementation of Dilithi-
um is constant time. This is however not true for Cortex-M3, because the compiler
is in no way prevented from emitting any of the variable-time instructions. In their
paper, the authors propose a modified Dilithium with a power-of-two modulus g = 232
to allow for cheaper masking. As a side-effect of this proposed change, multiplications
can be done using mul, mls, and mla as those implicitly wrap their results modulo

2%2_ In that case, implementing Dilithium in constant-time is more straightforward.

64

4.4 Fast Constant-Time NTTs on Cortex-M3

Interestingly, many of the operations within Dilithium do not handle secret data,
and, hence, do not need to be constant time. Particularly, all operations in the sig-
nature verification (Algorithm 3.17, Verify) are only operating on public data and
can, therefore, be implemented in variable time. Similarly, in signature generation
(Algorithm 3.17, Sign) NTT(ty) (line 15), NTT(H(u, wy)) (line 20), and NTT~1(¢é » ty)
(line 28) are not processing secret data as both t and c are considered public. For
the details we refer to the security proof in [LDKL*19, Section 5]. The remaining
calls to NTT, NTT™!, and » do process secret data. Similarly, all operations in the key
generation of Dilithium (Algorithm 3.17, Sign) have secret inputs. In our implementa-
tion we provide both a constant-time and variable-time (leaktime) implementation
implementations of NTT, N TT7L, and . Because the variable-time implementations
are significantly faster, we prefer using them over the constant-time implementations

when we are only dealing with public data.

Note that, in theory, the compiler could introduce umull, umlal, smull, and smlal
instructions in other parts of the code as well. Since there is no easy way to prevent
compilers (gcc and clang) from emitting those instructions, we instead carefully
analyze the assembly generated by the compiler to not contain these instructions
in functions that are safe to leak. We add the suffix _leaktime to the names of

variable-time functions only operating on public data to support this analysis.

The remainder of this section describes the necessary changes to the Cortex-M4
implementation to ensure it executes in constant-time on the Cortex-M3. We de-
scribe the details from the bottom up, i.e., we start with the multiplication of coeffi-
cients, continue with the changes to the implementations of the Cooley-Tukey and
Gentleman-Sande butterfly operations, and finally describe the changes to the NTT,
NTT! and the rest of the scheme.

4.4.1 smull and smlal

As Dilithium uses a 23-bit modulus g, its polynomials are usually represented as vectors
of 32-bit values. Consequently, multiplying coefficients requires multiplication of 32-
bit values producing a 64-bit product. Usually, Montgomery multiplication is used, so
that the result is promptly reduced back to 32-bits. In our Cortex-M4 implementation
the Montgomery multiplication is computed using smull and smlal, which—as we

65

4 Fast Dilithium on Cortex-M3 and Cortex-M4

discussed in Section 2.5—execute in variable-time on the Cortex-M3. In case the

inputs are secret, we cannot use those instructions.

In general, there are two approaches to address this issue: either re-implement
smull and smlal using available constant-time instructions (mul, mla, add) or using
a different representation of polynomials that does not require to multiply 32-bit
coefficients. We experimented with the latter approach by using multiple smaller 16-
bit polynomial multiplications to construct a larger 23-bit polynomial multiplication.
The idea is to perform polynomial multiplications in R, by first splitting up the
polynomial into multiple polynomials in Z,, /(X" + 1), performing the polynomial
multiplication in these smaller rings and then reconstructing the result in R; using
the explicit Chinese remainder theorem [BS07]. A similar approach is used in the
AVX2 implementation of NTRUPrime [BCLv19]. For the result to be correct, it needs
to hold that 2n - [q/ 2J2 < I g;. For example, one could use the NTT-friendly primes
{7681,10753, 11777, 12289}. However, this approach turned out to be slower than re-
implementing the smull and smlal instructions using mul instructions, and hence we
did not use it in our implementation. Nonetheless, we present results for 16-bit NTTs
on the Cortex-M3 for the primes 3329 and 12289 which are used in the NIST key-
encapsulation candidates Kyber [ABDK*19] and NewHope [PAAB*19] respectively.
We report the results for the full schemes in Appendix 4.A.

To re-implement smull and smlal, we use the schoolbook approach, i.e., we repre-
sent the 32-bit inputs in radix 2!
Let a = 2%, + ag and b = 2'%b; + by, with 0 < ay, by < 2'¢ and —2'° < a;,b; < 2,
then the product ab = 232a;b; + 2'%(agh; + ajby) + aghy, with —231 < ab; < 231,
Accordingly, our constant-time assembly implementations for smull and smlal are
illustrated in Algorithm 4.5 and Algorithm 4.6. We denote them by SBSMULL and

and compute the product as sums of 32-bit products.

SBSMLAL in the following. The four 16-bit halves of the two multiplicands are passed
in the registers ay, ay, by, and by; the 64-bit output is placed in ¢y (lower half) and ¢,
(upper half). For smlatl, ¢y and ¢; initially contain the value to be added to the product.
On the Cortex-M3, additions and multiplications use 1 cycle, while mla uses 2 cycles.
As such, the SBSMULL macro takes 7 cycles to execute, while SBSMLAL takes 9 cycles.

It is important to note that SBSMULL (and SBSMLAL) are not semantically equivalent
to smull (and smlal). In case the accumulation (agb; +a;b) in line 4 of Algorithm 4.5
or line 6 of Algorithm 4.6 overflows, the carry bit is lost and the result will not be

66

4.4 Fast Constant-Time NTTs on Cortex-M3

Algorithm 4.5: Schoolbook smull (SBSMULL)

input: a = a0 + a1 -2
input: b = bo + b1 - 21°
output: ¢ = ab = co + c1-2%

mul cO, a0, bo

mul cl, al, bl

mul tmp, al, bo

mla tmp, a0®, bl, tmp
adds cO, co, tmp, 1lsl #16
adc cl, cl, tmp, asr #16

Algorithm 4.6: Schoolbook smlal (SBSMLAL)

input: @ = a0 + a1 -21°
input: b = bo + b1 - 21°
input: ¢ = co + c1-2%
output: ¢’ = c+ab = co + c1-2%

mul tmp, a®, bo

adds c0, coO, tmp

mul tmp, al, bl

adc cl, cl, tmp

mul tmp, al, bo

mla tmp, a0®, bl, tmp
adds cO, co, tmp, 1lsl #16
adc cl, cl, tmp, asr #16

67

4 Fast Dilithium on Cortex-M3 and Cortex-M4

correct. Hence, our schoolbook multiplication does not support the full 32-bit range

of the inputs. In general, we have to consider two cases:

1. One of the factors (say b) is small, e.g., a twiddle factor (|r| < g) or the constant
g. In that case, by is at most lz%J = 127. In the worst case, both b, and g are

equal to 2'® — 1. Consequently, for the addition (ab; + a;by) not to overflow,

31_1_ (o16_
2%1_1-127-(2 1)J:32641'

a; can be at most l STey

2. Both multiplicands can be equally large. This occurs, for example, in the
pointwise polynomial multiplication. In that case, both agb; and a,b, need to

231_1 30 230_4 14

be less or equal to lTJ = 2°" — 1 and hence, a;,b; < lFJ =2
Case 1 applies in the NTT and NTT™1. In the NTT, the coefficient values never
exceed 10q, which is sufficiently small for the multiplication to remain safe. Similarly,

in the NTT™! coefficients never exceed 128q < 32641 - 216,

Case 2 applies in the pointwise polynomial multiplication. In that case, the input

coefficients are bounded by 10g which is comfortably below 23°.

4.4.2 Cooley-Tukey and Gentleman-Sande Butterflies

Algorithm 4.7: Constant-time Cooley-Tukey butterfly on the Cortex-M3
input: po (32-bit signed)

input: p1 = p11+ p1h-2'® (p11 16-bit unsigned, p1h 16-bit signed)
input: twiddle = t1 + th - 2! (t1 16-bit unsigned, th 16-bit signed)
output: po, pl (32-bit signed)

let: qinv = 4236238847, ¢ = 8380417 = q1 + gh - 216

SBSMULL tmpl, tmph, pll, plh, tl, th ; (tmpl,tmph) := (p1l,p1h)-twiddle

mul pih, tmpl, ginv

ubfx pll, plh, #0, #16

asr plh, plh, #16

SBSMLAL tmpl, tmph, pll, pilh, ql, gh ; (tmpl,tmph) := (tmpl, tmph) + (p1l,plh)-q
sub pl, p0O, tmph

add p0, p0O, tmph

Using constant-time SBSMULL and SBSMLAL subroutines, we can construct the but-

terfly operations needed to implement the NTT and NTT~!. Algorithm 4.7 depicts

68

L . S T C

4.4 Fast Constant-Time NTTs on Cortex-M3

the modified Cooley-Tukey butterfly operation based on Algorithm 4.2. To be able
to use SBSMULL, p; and the twiddle factor need to be loaded in half-words, while p,
can be loaded as a 32-bit word. For the multiplication by g, we require to have the
lower and the upper half-word of g separately. Additionally, we need to split up the
32-bit result of the multiplication by —¢~! into half-words (lines 3 and 4). In total,
the Cooley-Tukey butterfly operation requires 21 cycles on the Cortex-M3, while
Algorithm 4.2 only needs 5 cycles on the Cortex-M4.

Algorithm 4.8: Constant-time Gentleman-Sande butterfly on the Cortex-M3
input: po, p1 (32-bit signed)

input: twiddle = t1 + th - 2!® (t1 16-bit unsigned, th 16-bit signed)

output: po, p1 (32-bit signed)

let: qinv = 4236238847, g = 8380417 = q1 + gh - 216

sub tmp, p0O, pl

add p0o, po, pl

ubfx tmpl, tmp, #0, #16

asr tmph, tmp, #16

SBSMULL tmp, pl, tmpl, tmph, tl, th ; (tmp,pl) := (tmpl, tmph)-twiddle

mul tmph, tmp, ginv

ubfx tmpl, tmph, #0, #16

asr tmph, tmph, #16

SBSMLAL tmp, pl, tmpl, tmph, ql, gh ; (tmp,pl) := (tmp,pl)+ (tmpl, tmph)-q

Similarly, Algorithm 4.8 depicts our constant-time assembly implementation of
the Gentleman-Sande butterfly. As the addition and subtraction happens before the
multiplication by the twiddle factor, both py and p, are loaded as full 32-bit words,
while the twiddle factor is again split into two half words. After the subtraction
in line 1, we split up the result before we pass it into SBSMULL. To perform the
Montgomery reduction, we again need the split up the result of the multiplication by
—q~ ! into halves, before multiplying it by q using SBSMLAL. Each Gentleman-Sande
butterfly operation requires 23 cycles on the Cortex-M3 which compares to 5 cycles
for Algorithm 4.4 on the Cortex-M4.

69

4 Fast Dilithium on Cortex-M3 and Cortex-M4

4.4.3 NTT,NTT !, and

Using the Cooley-Tukey butterfly from the previous section, we implement the NTT.
Similar to in the Cortex-M4 implementation, we pre-compute all the twiddle factors
and place them into flash. As our Cooley—Tukey butterfly requires the second coef-
ficient and the twiddle factor in halves, we load those using ldrh (for the unsigned
lower half-word) and 1drsh (for the signed upper half-word). This, however, signifi-
cantly increases register pressure and hinders the common optimization technique of
merging multiple levels of butterfly operations with the purpose of saving store and
load instructions. Therefore, we can not use that optimization and need to perform
one layer at a time. This also leads to a slightly different ordering of the twiddle
factors in memory. The results of the butterfly are returned as 32-bit values and can,

hence, be stored back using str.

For the NTT™!, we proceed likewise. However, the inputs to the butterfly have to
be loaded in full-words using ldr. At the end of the NTT™L, each coefficient of the
polynomial is multiplied with the constant n~! followed by a Montgomery reduction.
We integrate this step into the last level of the NTT™! in order to minimize load and
store operations. Furthermore, we observe that n~! in Montgomery domain is 41 978
and, hence, less than 16-bits. Therefore, we do not need a full SBSMULL but can use
a simpler multiplication routine that multiplies a 32-bit word by the 16-bit constant

which requires 2 multiplication instructions and, hence, 2 cycles less.

Besides the NTT and NTT~! we identify one other place where our compiler is
introducing smull and smlal instruction: The pointwise multiplication . If either of
the multiplicands is secret, the pointwise multiplication must not use the variable time
instructions. We guarantee that by rewriting the pointwise multiplication in assembly
and making use of the Montgomery multiplication using SBSMULL and SBSMLAL like
in our butterfly operation in Algorithm 4.7 and Algorithm 4.8. In case both inputs
are considered public, we use the pointwise multiplication which was presented in
Section 4.3.

70

4.5 Results

4.5 Results

This section presents the performance results for our Dilithium implementations.
First, we present new speed records for the Dilithium NTT on the Cortex-M4 and first
results for the Dilithium, Kyber, and NewHope NTT in Section 4.5.1. We then present
results for the full Dilithium scheme on the Cortex-M4 (Section 4.5.2) and on the
Cortex-M3 (Section 4.5.3). Finally, we profile our implementations on the Cortex-M4

in Section 4.5.4.

Cortex-M4 setup. We benchmark all our Cortex-M4 implementations on an STM32-
F407 Discovery board, which features the STM32F407VG microcontroller. It was
clocked at 24 MHz to eliminate flash wait states when fetching instructions or data
from flash. For benchmarking the algorithm latency we used the SysTick counter.
Our build and benchmarking setup is based on pqm4 [PQM4] and benchmarking our
code within pqm4 gives the same performance results. After review of our work, we
have merged our code into pqm4, where it has remained until it was superseded by

the new work of Chapter 5.

Cortex-M3 setup. The Cortex-M3 measurements were done on an Arduino Due
board which uses the ATSAM3X8E microcontroller. The ATSAM chip was clocked
at 16 MHz, which results in a flash access time with zero wait-states. The algorithm

latencies were measured using the internal cycle counter (CYCCNT).

Compiler, random numbers, stack measurements, and Keccak. For all mea-
surements, we used the GCC compiler, version 10.2.0. For obtaining random num-
bers (e.g., p and K), we use the hardware random number generators which are
available on both cores. The stack usage was measured by filling the memory with
sentinel values, executing the algorithm, and measuring the amount of sentinel-value
bytes that were overwritten during the execution. In the stack measurements, space
reserved for input and output values is not counted. For SHA3 and SHAKE, we use the
assembly-optimized implementation of the Keccak permutation from the eXtended
Keccak Code Package (XKCP).? As it only uses ARMv7-M instructions, we use the same

implementation on both platforms.

Zhttps://github.com/XKCP/XKCP

71

https://github.com/XKCP/XKCP

4 Fast Dilithium on Cortex-M3 and Cortex-M4

Table 4.2: Performance results for NTT, NTT™1, and o of Dilithium, Kyber, and
NewHope for the Cortex-M3 and the Cortex-M4 reported in clock cycles. The
Cortex-M3 (SAM3X8E) is running at 16MHz, and the Cortex-M4 (STM32F407) is
running at 24 MHz.

NTT NTT! o

[GKOS18] constant-time M4 10701 11662 -
This work constant-time M4 8540 8923 1955

Dilithium?
This work variable-time M3 19347 21006 4899
This work constant-time M3 33025 36609 8479
Kvberb [ABCG20] constant-time M4 6855 6983 2325
yber This work constant-time M3 10819 12994 4773
NewHope1024¢ [ABCG20] constant-time M4 68131 51231 6229

This work constant-time M3 77001 93128 18722

& n =256, q = 8380417 (23 bits), 8 layer NTT/NTT!
b n = 256, ¢ = 3329 (12 bits), 7 layer NTT/NTT ™!
¢ n=1024, g = 12289 (14 bits), 10 layer NTT/NTT!

4.5.1 NTT performance

In Table 4.2, we list the benchmarking results for the optimized NTT, NTT™L, and
pointwise multiplications (o) implementations in Dilithium, Kyber, and NewHope1024
on the Cortex-M3 and Cortex-M4. For the Cortex-M4, we obtain a speedup of 20%
and 23% for the NTT and NTT™! compared to [GKOS18; RGCB19]. This speedup
is mainly due to the switch to a signed representation of polynomials. We use this
representation throughout our new Dilithium implementations, which saves a number
of additions of multiples of gq. Additionally, we optimize the pointwise multiplication

(o) which was not optimized in previous implementations.

In the Cortex-M3 results, we first benchmark the implementation also used on the
Cortex-M4 which uses smull and smlal. As smull and smlal, but also mla, need
significantly more cycles on the Cortex-M3 (respectively 3-5, 4-7, and 2 on the M3
vs. 1 on the Cortex-M4), the cycle counts for NTT, NTT™!, and o increase between 2.3x
and 2.5x. Making those constant-time on the Cortex-M3 using SBSMULL and SBSMLAL

from Section 4.4.1 increases the number of cycles by a factor of 1.7.

72

4.5 Results

4.5.2 Cortex-M4 performance

Table 4.3: Performance results on the Cortex-M4 (STM32F407 at 24 MHz). Averaged
over 10 000 executions. From [RGCB19], “scenario 1” was used for comparison, as it
corresponds to the format that was used in this work.

Algorithm Params Work Speed [kec]
Dilithium2 This work 1315
Keygen Dilithium3 [GKOS18] 2320
Dilithium3 This work 2013
Dilithium4 This work 2837
Dilithium2 [RGCB19] 4632
Dilithium2 This work 3987
Dilithium3 [GKOS18] 8348
Sign Dilithium3 [RGCB19] 7085
Dilithium3 This work 6053
Dilithium4 [RGCB19] 7061
Dilithium4 This work 6001
Dilithium2 This work 1259
Verify Dilithium3 [GKOS18] 2342
Dilithium3 This work 1917
Dilithium4 This work 2720

Table 4.3 lists the benchmarking results of our Dilithium implementation, together
with the cycle counts from the relevant related work. As signing time varies consid-
erably depending on the number of rejections, we performed 10 000 executions and
took the average of the resulting cycle counts. Compared to the [GKOS18] imple-
mentation, we obtain speedups of 13%, 27%, and 18% for key generation, signing, and
verification respectively for Dilithium3. When comparing to the [RGCB19, scenario

1] implementation, the acieved signing speedup is 15%.

4.5.3 Cortex-M3 performance

Table 4.4 presents our results for the Cortex-M3. The only other work implementing
(a modified version of) Dilithium on the Cortex-M3 is from Migliore, Gérard, Tibouchi,

and Fouque [MGTF19]. However, they do not report cycle counts on the Cortex-M3,

73

4 Fast Dilithium on Cortex-M3 and Cortex-M4

Table 4.4: Performance results on the Cortex-M3 (SAM3X8E at 16 MHz). Averaged
over 10000 executions.

Algorithm/

strategy Params Speed [kec]
Dilithium2 1699

KeyGen Dilithium3 2562
Dilithium4 3587
Dilithium2 7115

Sign Dilithium3 10 667
Dilithium4 10031
Dilithium2 1541

Verify Dilithium3 2321
Dilithium4 3260

and we were not able to find their source code online. Therefore, we can unfortunately

not compare our results to theirs.

4.5.4 Profiling

To identify how much is still left to optimize in our implementation, we profiled the
implementations on the Cortex-M4. Table 4.5 contains the profiling results. We see
that the run-time of the scheme is mostly dominated by Keccak. The proportion of
cycles spent in hashing is up to 85% for key generation, 63% for signing, and 81% for
verification, which greatly limits the speedup achievable by further optimizing the
arithmetic of the scheme. This result clearly indicates that hardware acceleration
for SHA3 will essentially be a prerequisite for getting better-performing Dilithium
implementations when using Cortex-M4 or Cortex-M3 cores.

Only about 3.4% to 24.5% of cycles are spent in the NTT and inverse NTT. Another
3.9% to 13.2% of cycles are spent in the other assembly-optimized functions which
are pointwise multiplication, uniform sampling, and modular reduction. The time
spent in non-optimized C code is consistently relatively small. Hence, optimizing the
remaining code is not going to provide a large speedup. When looking at individual
functions of the non-optimized code, no function takes more than 3% of the total

run-time.

74

4.A Kyber and NewHope on Cortex-M3

Table 4.5: Profiling results on the Cortex-M4
Operation Keygen Sign Verify

Keccak 81.4% 554% 76.6%
NTT 1.9% 7.2% 5.4%
Dilithium2 NTT™! 2.7% 11.7% 2.8%
other asm 6.2% 9.3% 6.8%
not opt. 7.8% 16.3% 8.4%
Keccak 828% 63.7% 79.1%
NTT 1.7% 6.8% 4.4%
Dilithium3 NTT! 22% 86% 23%
other asm 6.4% 8.4% 7.0%
not opt. 6.9% 12.5% 7.2%
Keccak 84.2% 61.8% 80.9%
NTT 1.5% 6.2% 3.7%
Dilithium4 NTT! 1.9% 92% 1.9%
other asm 6.6% 10.0% 7.1%
not opt. 5.8% 12.9% 6.3%

4.A Kyber and NewHope on Cortex-M3

As a side-product of Section 4.4, we present implementations for the NTT and
NTT™! operations for the primes 3329 and 12289. While those did not allow us
to speed up our Dilithium implementation further, they can be used to implement the
key-encapsulation mechanisms Kyber and NewHope on the Cortex-M3 in constant-
time. We report the results for these schemes here. Our implementations of both
Kyber and NewHope are based on the implementations by Alkim-Bilgin-Cenk-
—Gérard [ABCG20]. As those implementations make heavy use of instructions not
available on the Cortex-M3 (e.g., SIMD instructions like uadd16, or multiplication
instructions like smlabb), these are not directly functional on the Cortex-M3.

In addition to the NTT and NTT~! implementations, we further port the other
assembly routines to Cortex-M3. For Kyber this includes polynomial addition, poly-
nomial subtraction, Barrett reduction, and base multiplication. For NewHope, we
use the same approach as [ABCG20], and use the Cooley-Tukey algorithm [CT65]
for NTT and the Gentleman-Sande algorithm [GS66] for NTT™ L. Beside that, we

port the code for polynomial addition, pointwise multiplication, and bit-reversal to

75

4 Fast Dilithium on Cortex-M3 and Cortex-M4

Table 4.6: Kyber and NewHope results on the Cortex-M3 (SAM3XS8E at 16 MHz)
compared to the fastest Cortex-M4 implementation. Average of 100 executions.
Platform Keygen Encaps Decaps
[kee] [kee] [kec]

Kvbers1a [ABCG20] Cortex-M4 455 586 544
Y This work Cortex-M3 539 682 652
[ABCG20] Cortex-M4 864 1033 970

Kyber768 This work Cortex-M3 1012 1194 1145
Kyber1024 [ABCG20] Cortex-M4 1405 1606 1526

This work Cortex-M3 1636 1853 1793

[ABCG20] Cortex-M4 1157 1675 1587
This work Cortex-M3 1239 1921 1888

NewHope1024-CCA

Cortex-M3. We present the results for both NewHope and Kyber in Table 4.6. The

slow-down compared to the Cortex-M4 implementation is between 7% and 20% and

as such it is not as significant as for the Dilithium implementations. However, it does

demonstrate the limitations of the Cortex-M3.

76

5 NTT optimizations on Cortex-M4

5.1 Introduction

At the point of writing, the NIST PQC standardization process is nearing the end of
its third round with announcements due in early 2022. Since Chapter 4, Dilithium
advanced to the finalists; its specification has been updated to a third version, and
its parameter sets have seen considerable modifications. Among the other finalists
in the competitions are four other lattice-based schemes including the three key-
encapsulation mechanisms (KEMs) Kyber, NTRU, and Saber and the competing digital
signature scheme Falcon. As there are only two other finalists (Classic McEliece
and Rainbow) that are not lattice-based, which both have excessively large keys, it
appears very likely that some of the lattice-based schemes are going to be selected

for standardization unless there are cryptanalytic breakthroughs.

It appears that the number-theoretic transforms are the main optimization tar-
get of all high-speed implementations of lattice-based crypto for the Cortex-M4. It
is either prescribed in the specification of Dilithium, Falcon [PFHK"22], and Ky-
ber [SABD*22], or maintains to be the fastest polynomial multiplication methods in
Saber, NTRU [CHKS*21], and NTRU Prime [ACCE™*20].

Moreover, as we have seen in Chapter 4, the performance of the NTT greatly
determines the performance of a Dilithium implementation. More so, we expect that
when acceleration for the Keccak family (i.e., SHA3/SHAKE) becomes mainstream
in microcontrollers, most of the computation will be spent computing the (inverse)
NTT.

In this work, we leave Cortex-M3, and focus on improving Dilithium on the Cortex-
M4. We show that even though implementations have been improving for many

years, we can still significantly improve the involved arithmetic.

77

5 NTT optimizations on Cortex-M4

5.1.1 Contributions

First, in Section 5.4, we observe that in Dilithium we can optimize the computation
of sy and csy. Since both ¢ and sq,s5 have very small absolute values, we can switch
to a much smaller modulus ¢’ that allows efficient computation of the product. For
Dilithium2 and Dilithium5, we make use of the Fermat prime ¢’ = 257, which allows
using a particularly fast variant of the NTT called the Fermat number transform
(FNT), similar to [LMPRO08] for SWIFFT. Furthermore, [LMPR08] implements an FNT
on an Intel processor while we implement the FNT on the Cortex-M4 and make use
of its barrel shifter. For Dilithium3, the FNT does not work, as its value = 196 is
too large. We instead use an incomplete NTT with ¢’ = 769 which is still much faster
than computing the NTT modulo the original Dilithium g. To best of our knowledge,
we are the first to propose using a smaller modulus for these multiplications within
Dilithium.

The new NTT modulo the smaller ¢’ = 769 is very similar to the NTT used in
Kyber (which uses g = 3329). Therefore in Section 5.3, we can learn from techniques
from previous work on the Cortex-M4 optimizing Kyber, Saber, NTRU, and NTRU
Prime, and integrate them into both the “big” NTT (modulo the big g that is used in
Dilithium), as well as the “small” NTTs (which is used in Kyber and Dilithium3). While
the techniques are already known, they have so far not been applied to Dilithium.
This includes (1) the use of Cooley-Tukey butterflies for the inverse NTT previously
proposed for Saber in [ACCH™22]; (2) the use of floating point registers for caching
values in the NTT which was first proposed in the context of NTTs for NTRU Prime
in [ACCE*20]. This allows one to merge more layers of the NTT and reduce memory
access time for loading twiddle factors; and (3) we make use of the “asymmetric mul-
tiplication” proposed in [BHKY*21] which eliminates some redundant computations
in the base multiplication of the small NTTs at the cost of extra stack usage.

In Section 5.5, we present the resulting implementation. We measure the perfor-
mance results using the pqm4 [PQM4] framework and compare them to previous

work.

Code. The implementations of Kyber and Dilithium that are the result of this work
are in the public domain and can be obtained by following the instructions described

on page 10. The code is published and licensed under a CCO copyright waiver.

78

5.2 Preliminaries

5.2 Preliminaries

5.2.1 Fermat Number Transform

The Fermat number transform (FNT) is a special case of NTT in that the modulus
is a Fermat number F, := 22 + 1. It was introduced in [SS71] for large integer
multiplications and in [AB74; AB75] for digital convolutions. In this chapter, we
implement FNT for negacyclic convolution. For arbitrary Fy as the modulus, cyclic
transformations of sizes dividing 2K*2 are supported [AB74; AB75]. For computing a

negacyclic transformation of size n = 2*1 and ¢, = /2, the first split becomes

ZpIX)/(X" = 2) =zl X)) =22)« Zg[X) /(X7 42
—ZE[X1/(X? =227 x Z[X] /(X2 — 227 (142)),

After applying k layers, all of the polynomial rings are of the form Z[x]/(X * - 2/)
where jis an odd number. Since {2, = 2, we can apply one more split. Furthermore, if
Fy is a prime, then we can compute cyclic transformations of sizes up to 22" = F.—1
and negacyclic transformations up to 221 Since the twiddles in initial k layers are
powers of two, we can multiply with the twiddles using shift operations which is
much cheaper than explicit multiplications on many platforms. Note that the only
known prime Fermat numbers are Fy = 3, F; =5, F; = 17, F3 = 257, F; = 65 537. Out
of those, only F; and F, appear promising for the use in Dilithium. They allow to

compute 3 or 4 layers using only shifts.

5.3 Improvements to the NTT

5.3.1 FPU registers & improved layer merging

In the first six layers of the Dilithium NTT, each time 7 twiddle factors are required
and re-used multiple times throughout the iterations. By using the floating-point
registers for caching the twiddle factors, the number of cycles for memory loads are
reduced. This technique has been proven to be beneficial in past work [ACCE*20;
ACCH"22; CHKS"21]. In our implementations, we load the 7 twiddle factors into 7

floating-point registers once with vldm instruction in 8 cycles. Then, in each iteration

79

5 NTT optimizations on Cortex-M4

the twiddle factors are fetched from the floating-point registers with vmov in a single
cycle each. This improves what we did in Chapter 4, where many twiddle-factors
take two cycles to load. For the last two layers, it is not beneficial to make use of the
floating point registers as none of the twiddle factors are re-used.

Aside from reducing the amount of cycles used to load the twiddle factors in the
NTT, the usage of the FPU registers reduces the pressure on the Cortex-M4 general-
purpose registers. Therefore, we can improve the merging pattern of Chapter 4, where
we merged the layers by layers 1-2, 3-4, 5-6, 7-8. Instead we implement the NTT
by merging layers 1-3 and 4-6 (while and 7-8 remains unchanged). By changing
the number of layer groups from 4 to 3 we reduce the number of coefficient load and

store operations with 25%.

5.3.2 Switch to CT-butterflies

In previous implementations of Kyber and Dilithium for the Arm Cortex-M4, the NTT
was always implemented using CT butterflies, while the inverse NTT was implemented
using GS butterflies, which is a commonly seen pattern for implementations using the
NTT in general. Opposed to that, we implement the inverse NTT using CT butterflies
to limit the coefficients’ growths, as for example suggested in [Seil8, Section 2.1] or
implemented for Saber in [ACCH*22]. In the Dilithium NTT, this completely removes
the need for any additional intermediate coefficient reductions. Using CT butterflies
for the inverse NTT requires to do additional twisting during the computation of the
last layer, but the total number of multiplications does generally not increase because
multiplications in the same amount can be omitted during the butterfly operations
(“light butterflies”).

Further, we make use of a technique introduced in [ACCH* 22, Appendix D] which

computes light butterflies with one less Montgomery reduction.

5.4 Small NTTs for Dilithium

In the signature generation of Dilithium, we recall that the polynomial ¢ consists of 7
coeflicients that are +1s and 256 — 7 coeflicients that are 0, and all polynomials in s,
and s, consist of coefficients in [—#, n]. The absolute values of the coefficients in csq

and cs are bounded by 7 - 7 = f, and the computation can be regarded as in Z for

80

5.4 Small NTTs for Dilithium

q’ > 2B [CHKS"21, Section 2.4.6]. As far as we know, all previous implementations
choose g’ = 8380417 and employ the NTT defined for Dilithium. However, since
only the correct cs; and cs, are required, there is some freedom for choosing q’. The
bound f is {78,196,120} for Dilithium{2,3,5} respectively. Consequently, we choose
the Fermat number q° = F; = 257 for Dilithium2 and Dilithium5, and ¢’ = 769 for
Dilithium3. Alternatively, one can also re-use the Kyber prime ¢’ = 3329 for any of
the parameters in case re-using the code is of interest. We have also experimented
with the Fermat number ¢’ = F;, = 65537 for Dilithium3. However, this did not result

in in a speedup compared to ¢’ = 769.

5.4.1 FNT for Dilithium2 and Dilithium5

For ¢’ = 257 = 28 + 1, we have FNT defined over Z5;[X]/(X?° + 1). We implement
the forward transformation with 7 layers of CT butterflies. Since the input coefficients
for ¢, s1, and sy are at most in [—7, 7], we only need very few reductions. Recall
that a CT butterfly maps (a,b) to (a + wb,a — wb) (where w is the twiddle factor),
so we can implement it with mla and mls. Furthermore, we can also take a closer
look at the initial layers. Since —1 = 2% (mod 257), the first layer can be written
as Zys7[X1/(X?0 + 1) = Zos7[X] /(X128 — 2%) x Z557,[X] /(X2 + 2%) and the corre-
sponding CT butterfly maps (a, b) to (a + 2*b,a — 2*b). We denote such computation
as CT_FNT(a, b,4). Notice that without loading twiddle factors, we can implement
CT_FNT(a, b, LogW) efficiently using the barrel shifter as illustrated in Algorithm 5.2.

Algorithm 5.1: CT butterfly with small w
Input: (a,b) = (a,b)
Output: (aout, bout) = (a + wb,a — wb)

1: mla aout, b, w, a

2: mls bout, b, w, a

Let FNT ! be the inverse of FNT. We first observe that the inverse of 2 can
be written as 27K = 2167k = _p8k (mod 28 + 1). There are two places where we
need to multiply by an inverse of a power of two: (i) the inverses corresponded
to the butterflies with w = 2'°8" in CT_FNT, and (ii) the scaling by 12871 at the
end of FNT ~!. We denote CT_iFNT(a, b, logW) as the function mapping (a,b) to
(a— 28D, g + 2108 = (g + 28F1o8Yp g — 28F1o8%p) and implement it with the barrel

81

5 NTT optimizations on Cortex-M4

shifter as shown in Algorithm 5.3. Clearly, if CT_FNT(a, b, k) computes (a+2%b, a—2kb),
then CT_iFNT(a, b, 8 — k) computes (a + 2_kb, a-— Z_kb) which can be used in FNT 1.
We compute FNT ! with four layers of GS butterflies followed by three layers of CT
butterflies. During the GS butterflies, since the twiddle factors are also very small,
we can replace some of the mul, add, and sub with mla and mls. For CT butterflies,
since the twiddle factors are powers of two, we implement them with Algorithm 5.3.
Lastly, at the end of CT butterflies, we merge the twisting by powers of two with the
multiplication by 12871,

Algorithm 5.2: CT_FNT(a, b, LogW) Algorithm 5.3: CT_iFNT(a, b, LogW)
input: (a,b) = (a,b) input: (a,b) = (a,b)
output: (a,b) = (a + 2'°8"p, q — 21°8Wp) output: (a,b) = (a — 2'°p, q + 2'°8p)
1: add a, a, b, 1sl #logW 1: sub a, a, b, 1sl #logW
2: sub b, a, b, lsl #(logW+1) 2: add b, a, b, lsl #(logW+1)

5.4.2 NTT over 769 for Dilithium3

For Dilithium3, since the maximum absolute value of cs; and csy is bounded by
B =4-49 = 196, we cannot use ¢’ = 257 < 2-196. We therefore choose ¢’ = 769,
which is the next prime for which a 256th primitive root of unity exists. We use the
16-bit NTT and NTT™! from Kyber ([AHKS22, Section 3.1]), but we remove most of
the Barrett reductions.

In the NTT, we do not need any intermediate Barrett reductions. Moreover, since
we are using a 16-bit NTT for computing c¢s; and cs,, we can remove the Barrett

reductions at the end and allow elements growing up to 7q’ in absolute value.

For the NTT™!, replacing with ¢’ = 769 allows us to postpone the Barrett reductions
by one layer and cut the number of Barrett reductions by half. At the end of NTT™}, we
replace the 16-bit Montgomery multiplication with straight multiplication and 32-bit
Barrett reduction. By using 32-bit Barrett reduction, the result is within [—384, 384] if
the product is in [~113025697, 113025697]. Since log, (12922627

384
values in [—384,384] by applying 32-bit Barrett reduction to the product of any

) = 18.17, we derive
signed 16-bit value and any constant from [—384, 384]. The downside for using 32-bit

Barrett reduction is a slightly higher register pressure, but overall it is more favorable
because we don’t need to reduce them again. This is different from the 16-bit NTT

82

5.5 Results

in [ACCH"22]. They implemented the twist with Montgomery multiplication and
then reduced the result to [—384, 384] with an additional 32-bit Barrett reduction.

5.4.3 Asymmetric Multiplication

In Dilithium, cs; and cs; are computed as NTT }(NTT(c) » NTT(s,)). During each
rejection-sampling loop s; and sy remain unchanged, so usually their NTT represen-
tation is precomputed before entering the rejection-sampling loop.

The new small-¢" NTTs from Section 5.4, are incomplete, i.e., 7 instead of 8 layers
are computed, and therefore the product of two polynomials inside NTT-domain
I = Co§ consists of 128 2 x 2 schoolbook multiplications. For computing #iy; +dly; 1 X =
(G + Gip1X)(S3i + $i41X) mod (X? —), we have ty; = 38y + Gpig1Spi410; and
Uoir1 = C9iS9ix1 + $2iCoi1 (Where «j; is the relevant twiddle factor).

The computation of ¢s; and csy visits £ + k polynomials in sq, 85, which means that
the computation of ¢y;, 1 «; (or the computation of $y;, 1) is repeated € + k times. This
can be avoided by caching the intermediate results of ¢, {«w; in a separate vector
¢’ [BHKY"21, Section 4.2].

5.5 Results

Our benchmarking setup is based on pqm4 [PQM4] and follows the methodology from
Section 2.6.2. During the benchmarks, we clock the microcontroller at 24 MHz in order
to avoid wait states during memory operations. We compile the code using arm-none-
eabi-gcc version 10.2.1 with the -03 option. Regarding the Keccak implementation,
we make use of the code provided in pqm4. For the randomness generation we rely
on the microcontroller’s hardware rng.

We compare our implementations of Dilithium{2,3} to the code in pqm4 which is
based on [GKS21] (i.e., Chapter 4). For Dilithium5, pqm4 does not currently have an
implementation due to a lack of stack space. We apply some of the stack optimizations
of [GKS21] to our implementations, especially to make Dilithium5 work as well. It
is important to note that the parameters of Dilithium were changed at the start of
the third round of the NISTPQC competition. The numbers presented here reflect
the round 3 versions contained in pqm4. Those are optimizations from the original

83

5 NTT optimizations on Cortex-M4

papers ported to the third round parameters. The performance results for the full

schemes do not match the original publications.

5.5.1 Performance of NTT-related functions

In Table 5.1, we present the cycle counts for the transformations we deploy in our
implementation of Dilithium. We achieve a speedup of 5.2% for the Dilithium NTT,
and 5.7% for the NTT™!. For the small NTTs the metric we are optimizing is (k +
) - NTT + #reps - (NTT + (k + 1) - (basemul + NTT™1)). As most of the small NTT
are computed outside of the loop, we moved some of the reductions into the NTT
resulting in a faster basemul. Note that for ¢ = 257 and ¢ = 769 the NTT and NTT™!
have very close performance, but the basemul differs. This results in the FNT being
advantageous for Dilithium2 and Dilithium5. For (basemul + NTT1), we achieve
a speedup of 37.6% for ¢ = 257, and 33.1% for ¢ = 769 compared to g = 8380417
from [GKS21]. We also compare our ¢ = 769 implementation to an existing one
by [ACCH*22], because theoretically, their 6-layer approach could also be used as
well. Since the computation is dominated by (basemul + NTT™1), we find that our
7-layer approach is faster. We also carefully examine the code by [ACCH"22], and
find that the last 32-bit Barrett reduction is performed outside the reported NTT!,

so the speedup is more.

Table 5.1: Cycle counts for transformation operations of Kyber and Dilithium. NTT
and NTT~! correspond to the schemes default transformations, i.e., ¢ = 3329 for Kyber
and g = 8380417 for Dilithium. The NTT with ¢ = 257 is deployed for Dilithium2 and
Dilithium5, and the NTT with g = 769 is used for Dilithiums3.

prime implementation NTT NTT! basemul
Kyber ¢ = 3329 [ABCG20] 6852 6979 2 317b
[AHKS22]? 5992 5491 1613
[GKS21] 8540 8923 1955
= 838041
q= 8380417 s work 8093 8415 1955
Dilithium ¢ = 257 This work 5524 5563 1225
e [ACCH 22] (6-layer) 4852 4817 2966
7= This work 5200 5537 1740

Result from the published paper corresponding to this chapter.
b Asymmetric basemul as used in the IP (enc). As the basemul in the MVP and IP consists of individual
function calls, the cycle count is not straightforward to measure.

84

5.5 Results

5.5.2 Performance of the full scheme

Table 5.2 contains the speed performance results for Dilithium. We achieve consistent
speedups for all parameter sets. The absolute savings due to our optimizations are
clearly seen, particularly in signing. The speedup for signing ranges from 1.5% to
5.6%.

In relative terms, the impact of our optimizations on the scheme seems relatively
small compared to the speedups we gain for the polynomial arithmetic. This is
due to dominance of the hashing operations as thoroughly analyzed in previous
work [PQM4].

Table 5.2: Cycle counts and stack usage for Dilithium. K, S, and V correspond to the
key generation, signature generation, and signature verification. Cycle counts are
averaged over 10 000 executions.

implementation Dilithium2 Dilithium3 Dilithium5
P kece stack [kB] kece stack [kB] kee stack [kB]
K 1602 38 2835 61 4836 98
pqm4, [GKS21] S 4336 49 6721 74 9037 115
V 1579 36 2700 58 4718 93
K 1596 8508 2827 9540 4829 11696
This work S 4093 49 6623 69 8803 116
V 1572 36 2692 58 4707 93

85

6 Dilithium for

memory-constrained devices

6.1 Introduction

Dilithium signing has two main practical drawbacks for embedded devices. The
first one is the variable signing time, which follows a geometric distribution. When
using the parameter set targeting NIST security level 3, the probability that the
signing time is more than twice the expected average is approximately 14 percent.
This is significant and will have a real impact on many performance requirements
for various use-cases. The second drawback relates to the memory requirements
which are significantly higher for virtually all PQC schemes compared to the classical
digital signature counterparts. This can not only attributed to relatively large key
and signature sizes, but also heavy use of stack space for the storage of intermediate
data. For example, the embedded benchmarking platform pgm4 [KRSS19; PQM4]
(which executes on the Arm Cortex-M4) initially reported memory requirements
for Dilithium in the range of 50-100 KiB for the original reference as well as the
optimized implementations.

Dilithium has received a significant amount of attention from the cryptographic
community. One direction of study comes from an applied cryptographic engineering
perspective: how can one realize efficient implementations in practice for a selected
target platform. Often the single most important optimization criterion is latency:
the algorithm needs to execute as fast as possible, at the possible expense of other im-
portant metrics. Examples include the AVX2-based implementations from [DKLL"18]
and [FK19]; or the implementation from [RGCB19], which requires up to 175 KiB of
memory; or the implementations from Chapters 4 and 5.

Instead, in this chapter we target platforms that have significantly less memory and

computational power. Typical examples are platforms which are based on Arm Cortex-

87

6 Dilithium for memory-constrained devices

MO(+) cores. Such platforms are typical for a large family of IoT applications. Products
in this range include the LPC800 series by NXP (4-16 KiB of SRAM), STM32F0 by
ST (4-32 KiB of SRAM), and the XMC1000 by Infineon (16 KiB of SRAM). It is clear
that PQC implementations with memory requirements of well over 50 KiB do not
fit on these platforms and will not be able to sign nor verify digital post-quantum
signatures.

In this chapter we investigate how to approach the challenge of trimming down
the memory usage of the Dilithium algorithm. We intend to find out whether it is
possible to execute Dilithium on such memory-constrained devices that often have

up to 8 KiB of SRAM and, if so, which performance penalty is incurred.

Contribution. First, in Section 6.2, we present various high-level memory consump-
tion and speed trade-offs for the signing procedure of Dilithium. Due to the iterative
nature of the signing procedure, there exist interesting implementation choices. We
implement each trade-off into the implementation presented in [GKS21] and present
the resulting stack usages and cycle counts. In the second part, we select the most
memory-economical strategy and continue to consider and apply multiple low-level
tradeoffs, and assess how far we can (reasonably) go with trimming down the memory
usage. In particular, in Sections 6.4 and 6.5 we come up with methods to reduce the
amount of memory needed to store the w vector and the amount of memory needed
to compute ¢ - 81, ¢ - 89, and ¢ - tg. For all operations (KeyGen, Sign, and Verify), we
propose an efficient allocation of the variables used during the algorithm. We present
a new pure-C implementation for Dilithium in which the techniques are applied,
which is optimized only low-memory usage. Then in Section 6.6, we measure the
achieved memory usage and the impact on the performance of the algorithm on the
Cortex-M4 platform using the pqm4 [PQM4] framework.

6.2 Basic time-memory trade-offs

Depending on the programmer’s requirements, there are multiple ways in which we
can implement Dilithium signing, each with their own tradeoffs.

For microcontroller implementations of Dilithium the main challenge is that com-
puting A is expensive since it involves many calls to SHAKE256 which is relatively

slow in software. Also, A is used multiple times during the signing procedure. Conse-

88

6.2 Basic time-memory trade-offs

quently, we either have to store the complete matrix A in RAM or flash, or incur the
cost of having to recompute it during each loop iteration.

In order to explore this time-memory tradeoff, we look at the signing operation
using three different strategies. In the first strategy, we refuse to recompute A during
the signing operation and instead store it in flash. The second strategy describes the
more traditional implementation of Dilithium, expanding A once during each signing
operation before entering the rejection-sampling loop. The third case describes the
situation wherein we are highly constrained in flash and SRAM size, but have ample
performance budget. In this strategy, we save the amount of memory needed by
computing both A and y on the fly.

Although the algorithm’s intermediate values can be stored anywhere in the RAM,

to keep it simple, we will consider that all variables are stored on the stack.

6.2.1 Strategy 1: A in flash

In Dilithium signing, the values A, §;, §,, and t, depend only on the Dilithium key pair.
Therefore, instead of computing these values during signing, we can compute these
values as part of the key generation. We assume that the platform has some kind of
non-volatile storage that is large enough (and secure enough?) to store these extra
values. Then, during the signature generation algorithm, instead of passing in sk (as
described in line 9 of Algorithm 3.17), we pass a larger struct that also contains the
precomputed values. These precomputed values (A, §;, 8, and t,) add up to k- £+ 2k +¢
(with k, € as listed in Table 3.1) polynomials that have to be stored extra. In the case of
NIST round-3 Dilithium3, this amounts to 47 KiB of extra flash space as each Dilithium
polynomial requires 1 KiB when stored uncompressed.

Because these four values are now stored separately, we do not have to compute
(and store) them anymore during the signature generation. Thus, this strategy will
save a considerable amount of SRAM, in exchange for (relatively cheap) flash space.
Furthermore, in the absence of hardware-accelerated SHAKE256, generating A is a
relatively expensive step in the signature-generation process. Having A stored in
flash will speed up the overall performance of generating signatures. Hence, we think
that this strategy will be the most favored to be deployed in a real-world small-devices

environment.

1A, and , need to be integrity-protected; §;, and §, need to remain secret and integrity-protected.

89

6 Dilithium for memory-constrained devices

6.2.2 Strategy 2: A in SRAM

When there is enough SRAM available on the device, we opt for the “traditional”
implementation of the signature generation algorithm. That is, we follow the specifi-
cation closely and implement signature generation following the general structure of
the Sign function Algorithm 3.17. Apart from some space for storing intermediate

values, we will need to allocate
« 4k polynomial slots for storing to, 8, w, \ 4B
« (k + 3)t polynomial slots for storing A, §;, y and ¥; and
« 1 polynomial slot for storing ¢.

This adds up to a pretty high lower bound of k - £ + 4k + 3¢ 4+ 1 KiB of necessary stack
space, e.g., 70 KiB for Dilithium3.

6.2.3 Strategy 3: streaming A and y

For the last strategy we considered the situation, wherein we optimize stack usage
without using extra long-term storage for precomputed values. In the signing imple-
mentation, we optimize exclusively for stack usage. We only intend to find the lower
bound of the needed stack space.

In contrast to the other strategies, we do not store any complete copies of A and
y. Instead, we regenerate every element of A and y on the fly when we compute
elements of w (in line 18 of Algorithm 3.17). Because we do not retain y after this
step, we regenerate it again later (in line 23 of Algorithm 3.17). Relative to strategy 2,
this saves us k - £ polynomials of space for A, and another ¢ polynomials for y.

When we look further into stack-optimizing the signing algorithm, we find that
the main bottleneck in terms of stack usage is the overlapping lifetimes of w and ¢.
In lines 23 and 28 of Algorithm 3.17, the values ry, ry and h all depend on both w
and ¢. However, in lines 20 to 21 we also need the complete value of w; (and thus w)
to compute ¢. Therefore, we conclude that we either have to store w and ¢ both at
the same time; or we have to recompute every element of w on the fly when we are
computing ry in line 23, and when we are constructing the hint h in line 28.

In order to recompute elements of w, we would have to do the matrix multiplication
NTT (A - NTT(y)) all over again, including the complete regenerating of A and y.

90

6.2 Basic time-memory trade-offs

The performance cost of this optimization would be at least a factor 2, so we chose to

not do this. Instead we accept that w and ¢ both need to be stored at the same time.

6.2.4 Splitting signature generation in an offline and online

phase

To speed up the Dilithium signing process even more, one can choose to split the
signature generation in an offline and online phase, where the offline phase can already
be performed before the message to be signed is known. The general idea of using an
offline/online phase was introduced in 1989 by Even, Goldreich, and Micali [EGM96],
and was first proposed for usage in lattice-based signature schemes in [AYS15]. It
has also been used by Ravi, Gupta, Chattopadhyay, and Bhasin in [RGCB19, Section
4.1.2] to optimize the online latency of Dilithium signing.

However for Dilithium, this optimization comes with a significant cost. In their
paper, Ravi, Gupta, Chattopadhyay, and Bhasin describe that an additional 260 KiB
of space? is needed to store the precomputed values for (NIST round-2) Dilithium3,
such that there is a 95% probability that at least one of the y values results in an
accepted signature. For the main target of the implementation from Chapter 4 (the
ATSAM3XB8E), that would mean that more than half its flash space would already
be lost to storing these precomputed values. We think that, in the general case, the
improved signature-generation latency does not justify this kind of loss in available

flash space.

6.2.5 Results

Each of the strategies we incorporate into the NIST round-2 implementation of
Dilithium from Chapter 4. Then we evaluate the stack usage for Keygen, Sign, and
Verify for each different strategy. For our signing strategy 1, we need to pre-compute
A, §;, 8, and t;. We include this pre-computation in the key generation.

In Table 6.1, we show the considerable improvement in stack-space usage over
the previous works that implement the NIST round-2 version of Dilithium. We see
that signature verification needs only around 10 KiB of storage space (depending on

the Dilithium parameters), without incurring a performance hit. Furthermore, when

2See [RGCB19, Table 6]. Compute 300 — 34 = 266 KB £ 260 KiB.

91

6 Dilithium for memory-constrained devices

Dilithium is deployed on a device that has enough space to store A—either in SRAM

or in flash—we get a reasonable signature-generation latency.

However, in the same tables we see the cost of aggressively optimizing for stack
space (i.e., when applying strategy 3). On both platforms, we see really dispropor-
tionate cycle counts for signature generation, with a slowdown of 3.3x to 3.9x when
comparing to strategy 2. For Dilithium3, the strategy-3 signature generation takes
about 24 million cycles on the Cortex-M4. On slow devices (like common 16 MHz

microcontrollers), this latency grows into the order of seconds.

When comparing to the [RGCB19] implementation, our strategy 1 is similar to their
scenario 2, while our strategy 2 corresponds to their scenario 1. For both scenarios,
we achieve substantial speedups for all parameter sets ranging from 14% to 20%.
Unfortunately, [RGCB19] does not report the memory usage of their implementations,
so we cannot compare them. We can however observe that our speedup of strategy
1 compared to strategy 2 is consistent with that of [RGCB19], with speedups of
{21%-22%,22%-24%,33%—-37%} for Dilithium{2,3,4} respectively.

6.3 Introducing advanced memory optimizations

In Section 6.2 we have looked at some time-memory tradeoffs that can be applied
to Dilithium, and how they perform for NIST round-2 Dilithium. Although the
analysis provides a good intuition into the general memory footprint of a Dilithium
implementation, it is still outdated, it only covers signature generation, and it does
not indicate any kind of lower bound. In the rest of this chapter, we will to complete
the work. While Section 6.2 only looked at the high-level structure of the Dilithium
signing algorithm, we will allow ourselves to step into primitive operations (such as
the NTT or pointwise multiplication) and modify them as part of the optimization
endeavour. Our goal is to determine if, using these optimizations, Dilithium can
be deployed to a device that only a minimal amount of memory. We will apply the
advanced memory optimization techniques and try to find that lower bound for the
latest version (i.e., NIST round 3) of Dilithium, using a new pure-C implementation of
Dilithium. We will measure the memory footprint of the implementation to determine
which variants of Dilithium can be executed in 8 KiB of RAM.

92

6.3 Introducing advanced memory optimizations

Table 6.1: Performance result for NIST round-2 Dilithium on the Cortex-M4
(STM32F407 at 24 MHz). Averaged over 10 000 executions.
Algorithm/
strategy Params Work Speed [kee] Stack [B]
Dilithium2 This work 2267 12 836¢
KeyGen (1) Dilithium3 This work 3545 159164
Dilithium4 This work 5086 18 980¢
Dilithium2 This work 1315 7916
Dilithium3 [GKOS18] 2320 50488
ReyGen Z&3) 1415 thiums This work 2013 8940
Dilithium4 This work 2837 9964
Dilithium2 [RGCB19, scen. 2]? 3 640 -
Dilithium2 This work 3097 14 452°
. Dilithium3 [RGCB19, scen. 2]2 5495 -
Sign (1) . . d
Dilithium3 This work 4578 17 660
Dilithium4 [RGCB19, scen. 2]? 4733 -
Dilithium4 This work 3768 20 860°
Dilithium2 [RGCB19, scen. 1]° 4632 -
Dilithium2 This work 3987 38300
Dilithium3 [GKOS18] 8348 86 568
Sign (2) Dilithium3 [RGCBI19, scen. 1]P 7085 -
Dilithium3 This work 6053 52756
Dilithium4 [RGCB19, scen. 1]° 7061 -
Dilithium4 This work 6001 69276
Dilithium2 This work 13332 8924
Sign 3) Dilithium3 This work 23550 9948
Dilithium4 This work 22 658 10972
Dilithium2 This work 1259 9004
. Dilithium3 [GKOS13] 2342 54 800
Verify s .
Dilithium3 This work 1917 10068
Dilithium4 This work 2720 11084

& “Strategy 1” from Section 6.2.1 corresponds to “Scenario 2” in [RGCB19].

b “Strategy 2” from Section 6.2.2 corresponds to “Scenario 1” in [RGCB19].

¢ For Dilithium?2 using stack strategy 1, an additional 23 632 bytes of flash space
are used for storing the precomputed values.

d For Dilithium3 using stack strategy 1, an additional 34 896 bytes of flash space
are used for storing the precomputed values.

¢ For Dilithium4 using stack strategy 1, an additional 48 208 bytes of flash space
are used for storing the precomputed values.

93

6 Dilithium for memory-constrained devices

6.4 Signature generation

As we have seen in Table 6.1, the digital signature generation in Dilithium requires a
significant amount of memory. For NIST round-2 Dilithium, the smallest implementa-
tion uses around 9-11 KiB of memory. Because of the increase of k and £ in round 3
of the NIST competition, we expect these number to increase with the next version of
Dilithium. The fastest implementation reported on the benchmark results from pqm4>
even requires approximately {49, 80, 116} KiB for Dilithium{2,3,5} respectively. In this
section we outline the proposed techniques to reduce the memory requirements of

the signing algorithm.

6.4.1 Streaming A andy

In Dilithium’s signature generation algorithm the matrix A requires k - £ KiB: by far
the largest contributor to memory. As we follow “Strategy 3” (Section 6.2.3), we apply
the optimization to not generate the entire matrix A but only generate the elements
of A and y on-the-fly when they are needed.

Compared to the traditionally structured signing algorithm, the expected memory
reduction of this optimization is k - £ KiB for A, and £ KiB for y; in practice this means
a saving of {20, 35, 63} KiB, for Dilithium{2,3,5} respectively. This optimization comes
at a performance price: the matrix A needs to be regenerated again from p on every
iteration of the rejection-sampling loop. Moreover, y needs to be generated twice
during each iteration of the rejection-sampling loop; once for computing w = Ay,
and once for computing z = y + csq later on. From the high-level analysis, we expect a
slowdown factor of around 3.3-3.9 compared to precomputing A and y if we assume

that both versions of Dilithium behave similarly.

6.4.2 Compressing w

Another significant contributor to the overall memory requirements is the vector w.
This could be resolved if one could compute and use a single element at a time during
the signature generation. Unfortunately, this is not possible due to the overlapping
lifetimes of w and ¢, as identified in [GKS21] (Section 6.2). In line 20 of Algorithm 3.17,

3Accessed February 14, 2022, using revision 3bfbbfd3. The implementation in pqm4 is based
on [AHKS22].

94

6.4 Signature generation

cis computed from w; = HighBits(w). On lines 23 and 28, the values ry and h depend
on ¢ and the complete vector w. This means that either all elements of w must be
retained between computing ¢ and computing rq and h, or w = Ay must be computed
twice during each iteration of the rejection-sampling loop. Recomputing the matrix-
vector multiplication in every loop iteration will roughly double the execution time
of the signing algorithm; although a viable direction to reduce memory we deemed
this performance impact too large. Instead, we explore the other option where all
elements of w have to be alive at the same time at the cost of storing k polynomials.

One polynomial has n = 256 coefficients, which are all bounded by g = 22° — 213 + 1.
In previous works, implementations have always used 32-bit data types for storing
these coefficients. Instead, we use a compressed representation for storing w. Instead
of using 32-bit registers for storing w coefficients, the approach is to explicitly reduce
them modulo g, reducing each coefficient to 24 bits and next pack the 256 24-bit
coeflicients into a 768-byte array. The (24-bit) compressed coefficients reduce the
amount of storage that is used for storing w from k - 1024 bytes to k - 768 bytes, which
results in a reduction of {1.0,1.5,2.0} KiB for Dilithium{2,3,5}, respectively. Packing
and unpacking coeflicients of w adds a little overhead during the matrix-vector
multiplication.

It should be noted that one could compress each coefficient into 23 bits instead of
24 bits. This would save an additional 32 bytes per polynomial. However, working
with the 23-bit format (packing and unpacking) is significantly more cumbersome
and therefore slower compared to the 24-bit format for alignment reasons and the
need for more expensive reductions during the computation of w. This explains why

we compress to 24 bits for the results presented in Section 6.6.

6.4.3 Compressingc-s;, c- s, and c-t,

The multiplications of the challenge ¢ € B, with the polynomials s; € S,{;, Sy € sk and
t € S;‘d, are typically computed using NTTs (see lines 22, 23 and 28 of Algorithm 3.17).
As the values of sy, s5 and t; are static throughout a whole signing computation, it is
computationally most efficient to pre-compute the NTTs on all these elements, and
store §1, 8 and to in memory before entering the rejection-sampling loop. Avoiding
the storage of these elements reduces the total memory used by 2k + ¢ KiB; i.e.,

{12,17,23} KiB for Dilithium{2,3,5}, respectively. Indeed, this would naively imply a

95

6 Dilithium for memory-constrained devices

performance loss as the NTTs need to be computed several times (at least once for
each aborted signature). However, the routine using (inverse) NTTs on the fly needs
at least 1.75 KiB of space: 1 KiB is needed to compute the (inverse) NTT for one
operand, while 0.75 KiB is needed to store the other operand in (24-bit) compressed
form. We find that, for the computation of sq, s, and ty, we do not necessarily need to
use the regular NTT. For most values involved, there is a lot of structure that can be
exploited. In the remainder of this section we discuss three different ideas to compute

c-81,c- g and ¢ - tg with lower memory requirements than using regular NTTs.

Sparse polynomial multiplication. The most obvious choice for polynomial
multiplication is the schoolbook approach. At first glance, using schoolbook mul-
tiplication actually requires more memory compared to NTT-based multiplication
because one cannot do the multiplication in-place. However, when using schoolbook
multiplication, one does not need to store the right-hand-side operand polynomials
(s1, s2, and ty) completely. We can multiply their coefficients in a streaming fashion,
unpacking them “lazily” from the secret key. Apart from using a small buffer, we
have now removed the need to store any full element from sy, s and ty. Although
one still needs 1.0 KiB for the accumulator polynomial, only 68 bytes are required for
storing the challenge c; as well as a small buffer of 32 bytes, which is used to unpack
polynomial coefficients more efficiently from the secret key. This adds up to 1124
bytes total: a reduction of a factor 1.37 compared to using a regular (32-bit) NTT.

Furthermore, one can reduce the computational as well as the memory complexity
by exploiting the regular structure of the challenge ¢ [ABBK*16; WTJB*20]. Recall
that the challenge polynomial has exactly 7 non-zero coefficients that are either +1,
where 7 € {39, 49, 60} depending on the Dilithium parameter set. Therefore, when
multiplying ¢ with some other polynomial, one really only needs to multiply each
coeflicient from the right-hand side operand with 7 coefficients in ¢. Skipping the
multiplications with the zero-elements is not a security concern (e.g., from a timing
leakage perspective) since the challenge value c is public.

Using this property, one can use a data structure for ¢ that allows for fast iteration
over all the non-zero coefficients. We use a single 64-bit datatype which indicates for
each of the 7 non-zero positions whether it is a +1 or a —1; and an array of 7 bytes
which stores positions of the non-zero coefficients. The benefit of storing the indices

of all non-zero coeflicients, as opposed to storing a bit-string with bits set for each

96

6.4 Signature generation

non-zero coefficient, is the fast iteration over the non-zero indices. If we store a bit
for every coefficient in ¢, we have to do a conditional addition/subtraction of the
coefficient in the other operand for every coefficient of ¢, i.e., n times. By only storing
the non-zero indices, we only have to do the addition/subtraction 7 times and avoid
computing any multiplications. Hence, this polynomial multiplication with c can be

done using 7 - n additions or subtractions only.

Alternative Number Theoretic Transforms. When computing c- sy and ¢ - sy
one can use a different-sized NTT over a smaller prime as described in [AHKS22]
(Chapter 5). The idea is that all coefficients of both cs; and c¢sy are bounded by
+7 -5 = £f. This allows computing the polynomial product with modulus ¢’ = 257
for Dilithium{2,5}, and g’ = 769 for Dilithium3. Since the coefficients in the product
are bounded by £, they will not overflow when computing them modulo ¢ >
2p. In [AHKS22], this improves the performance of the NTT-based multiplications
because—with ¢’ = 257—some of the multiplications with twiddle factors become
cheaper. Moreover, [AHKS22] still uses 32-bit registers for all values, which provides
so much headroom that it eliminates the need for any intermediate Barrett reductions
in both NTT algorithms. However, the small-modulus NTTs also allows one to store
all coefficients in 16-bit variables; computing an NTT in half the amount of memory
at the cost of reintroducing the intermediate Barrett reductions. When using this
technique, the memory requirement of ¢ - sy and ¢ - s, is reduced to 1.0 KiB: 0.5 KiB

for the first operand and product, and another 0.5 KiB for the second operand.

Kronecker Substitution. By applying (generalizations of) Kronecker substitu-
tion [Har09; Kro82] to ¢ - s; and ¢ - s5 one can reduce the polynomial multiplication
to the integer multiplications c(2/1) . 51(2’1) and c(2%) - 52(2’1) modulo 2254 + 1. The
application of Kronecker substitution to lattice-based cryptography has been stud-
ied [AHHP*18; BRV22], but its use for ¢ - s; and ¢ - s, has not been considered yet. In
order to retrieve the coefficients of the resulting polynomial, we require that 24 > 2.
This means we can select A = 8 for Dilithium{2,5} and A = 9 for Dilithium3, trans-
forming the full polynomial multiplication into a single 2048-bit multiplication and
a 2304-bit multiplication respectively. This requires 256 or 288 bytes for each of the
two inputs and result polynomials: assuming the result can overwrite one of the

inputs this means 512 or 576 bytes in total. Additionally one can use the more general

97

6 Dilithium for memory-constrained devices

Kronecker+ method [BRV22] to improve the performance further (the optimal setting
depending on the platform).

Although Kronecker substitution works perfectly well on the regular central pro-
cessing unit it is particularly suitable for small systems that typically have dedicated
hardware to perform (public-key) cryptographic operations in a timely manner. For
RSA or elliptic-curve cryptography (ECC), such co-processors come in the form of
large-integer multipliers that are heavily optimized for performing integer (modular)

multiplications.

6.4.4 Variable Allocation

After applying the memory optimizations described above we analyzed efficient
memory allocation schemes during the Dilithium signature generation algorithm.
This showed that one can reuse the 1 KiB memory location that is used for doing
computations on non-compressed polynomials. On top of that, we need 128 bytes
for storing pr and p’; and 68 bytes for storing ¢, as described earlier (¢ is stored solely
in the output buffer). The complete memory allocation of the signature generation

algorithm is listed in Figure 6.1.

When looking at Figure 6.1 one can observe that the memory bottle-neck is shared
between multiple subroutines. We see no trivial way to further optimize the allocation
of variables in memory. The only time-memory tradeoff that could still be performed is
to keep a single element of w at a time. Following the observation from Section 6.2.3 we
dismiss this approach because it requires us to compute all elements of w twice during
each iteration of the rejection sampling loop. This would not only require expanding
all elements of A and y twice, one would also need to recompute § = NTT(y) and
w = NTT !(%). Because the matrix multiplication is already a dominating factor
in the signing algorithm, this optimization would likely result in another slowdown
by a factor two. Its gains in terms of memory consumption would be (k — 1) - 768
bytes, i.e., {2.25,3.75, 5.25} KiB for Dilithium{2,3,5}, so it might be worthwhile if one
can compensate for or cope with this performance penalty.

98

6.4 Signature generation

(001 @8ed uo panunuo)) :1°9 aInJry

mdno 03 Yoym— T [|
(Az L+ (P8 — 'm L puIHdEW =: g q
US> o] ooy
uonjesrdynur yyooqootyds < (%) -2 =: 1 Ag\ °r
M= (Gsp M %o —m
g = 4> 7|z L~ 'm)’sugmor| yoayd
(D7 LIN=:I '
‘($)ea=:1 'L
() LIN = '(%9) () "LIN =: 2 G | 2.
sterouA[od ‘(%s) pue 2 31q-91 e < = ‘(%) 2
21njeusts 0} 'z oM —
g - > 7] ypoyd
K+01=:1
Ap-oys-uo ‘A ppe pue
pue (jjseywpuedx3 Sursn) ajdures < sysewpuedxy 'z
(D" LIN = L <5 o
‘("$)e2=:"1L L
(Cs)NLIN ='("9)) "LIN =: 2 Co | 2.
sterwrouA[od ‘(’s) pue 2 31q-91 oxew < ‘C’s) 2
(@1eguiadwes =: 5 L2 | | negupidwes
ayeudis 019 um < ("m |)y =: 2 (*m| Y
1opgnq ndino ur ‘(*m) payoed 2103s <
(M)sngysiy =: ‘('m) ('m)
(M), _1IN=:'m — ‘m m
A>[S0x05'he "y +n=: "
(HLIN=:4 vpuedxy ‘£
(1<, dyjseywpuedxy =: A — ysewpuedxy ‘K
0=: M BREIET] "
(| X)H=: d (1] XDH g
W ImH = W [1)H o
o] T | ol ol

89 802 $201 89L %9 9

99

6 Dilithium for memory-constrained devices

Figure 6.1: Memory allocation of the Dilithium signature generation algorithm. Hor-
izontal direction shows the memory slots that are used. Vertical direction shows
the progression in time. The boxes indicate the lifetimes of the variables used in
the algorithm. Dotted barriers denote that a variable is renamed, i.e., it is modified
in-place. Arrows in the algorithm indicate loops that iterate over some range, except
for the loop annotated by reject:, which indicates which code is repeated when a
signature in the Sign algorithm is aborted. All temporary values are denoted by a T;.

6.4.5 Summary of optimizations

In this section we have described a large number of (possible) optimizations that
can be applied to optimize the signature generation algorithm. For clarity, let us

summarize which optimizations were selected for use in our implementation:
« we generate the elements of A and y on-the-fly, as described in Section 6.4.1;
« for storing w, we use the compressed format described in Section 6.4.2;
« for computing c - ty, we use sparse polynomial multiplication (Section 6.4.3);

« for computing c-s; and c-s, we use the adapted small-modulus NTTs from Chap-

ter 5 (as described in Section 6.4.3); and

« we use the variable allocation described by Figure 6.1 and Section 6.4.4.

6.5 Dilithium key generation and signature

verification

Both the Dilithium key generation and verification algorithms are fundamentally
different from the signature algorithm with the most important difference being
that there is no rejection-sampling loop. Therefore, there is no performance ben-
efit to precomputing the matrix A in these algorithms, which already reduces the
memory requirement naturally. Moreover, in both KeyGen and Verify there are no
polynomials for which it makes sense to precompute the NTT representation to
speed-up the algorithms. This makes both algorithms significantly more lightweight
in terms of memory compared to the signature generation, even without any further

optimizations.

100

6.5 Dilithium key generation and signature verification

It is common that the key generation algorithm is executed on the same device
where one performs the signature generation algorithm. Therefore, we do not attempt
to reduce the memory footprint of KeyGen to the maximum extent, but instead try and
minimize the memory footprint of max(KeyGen, Sign). In other words, we optimize
the memory use of KeyGen, until it is at least as low as the memory use of Sign which

we try to optimize as much as possible.

6.5.1 Key Generation

When following the same strategy for computing the multiplication A - s; in the key
generation algorithm as in the signing algorithm one can already remove the need for
¢ different memory slots for polynomials. Using this optimization in combination with
careful scheduling the other memory (see Figure 6.2) already means that all variables
used in KeyGen use less memory than the signature generation algorithm. Hence,
there is no reason to sacrifice any performance to optimize the KeyGen algorithm
further.

Let us outline some memory improvements for the interested reader who has
requirements to reduce the memory even further. One idea comes up from the
observation that one can transpose the order in which the multiplication in t =
As; + sy is performed. Recall that in the Sign algorithm, the lifetime of c overlaps
with the lifetimes of all elements in w (where w is the output of the matrix-vector
multiplication) which limits the potential to reduce memory. However, in the KeyGen
algorithm there is no (equivalent to) ¢, i.e., there is no variable that causes the lifetimes
of the elements in t to overlap. Hence, the elements in t do not have to be alive at
the same time and can be computed in a streaming fashion. With this optimization
one can reduce the memory by (k — 1) KiB, saving {3.0, 4.5, 6.0} for Dilithium{2,3,5},

respectively.

6.5.2 Signature Verification

In the setting of the Dilithium signature verification algorithm we are interested
in minimizing the memory usage as much as possible. There are many embedded
applications that only use signature verification, e.g., secure boot implementations or
in the case of public-key infrastructures.

101

6 Dilithium for memory-constrained devices

The optimizations one can apply to the signature verification algorithm follow the
same pattern as those of Sign and KeyGen. In particular, it is possible to verify any
signature using only two slots for storing polynomials, of which one is 1.0 KiB and
one is 768 bytes, using the optimizations from Section 6.5.1. Apart from the 1.75 KiB
for storing two polynomials, one still needs twice the space for storing the SHA-3 state
(208 bytes) plus one compressed challenge polynomial ¢ (68 bytes). This sums up to a
minimum of 2276 bytes of required memory for such an approach in the Dilithium
verification algorithm. In contrast to the KeyGen and Sign algorithms, the memory

usage of the Verify algorithm is independent from any of the Dilithium parameters.

6.6 Results & discussion

Our implementation. Using the Dilithium reference implementation* as a starting
point, we wrote a new implementation for Dilithium, in which we applied the tech-
niques described in Sections 6.4 and 6.5. Because we are only interested in validating
the memory reduction techniques and not focused on performance we have opted
to write a cross-platform implementation in pure C. Correspondingly, our imple-
mentation does not include any architecture-specific optimizations. Moreover, our
implementation as well as the implementations we compare against are not hardened

in any fashion except for the prevention of (cache-)timing attacks.

Our implementation introduces many new internal data types that are optimized for
a lower memory footprint; like compressed polynomials (with 24-bit coefficients and
16-bit coefficients) and the compressed challenge. We implemented the g’ € {257, 769}
NTTs for ¢ - s1 and ¢ - sy multiplications, and we implemented the schoolbook mul-
tiplication for the ¢ - ty and ¢ - t; multiplications. We improved the implementation
such that parts can be called in a streaming fashion. For example, the matrix-vector
multiplication and ExpandA routines have been merged into a single non-buffering
function; and almost all packing/unpacking functions have been refactored to allow
for (un)packing polynomials in small chunks. Because of the tight memory budget
we have removed some local stack allocations from all internal Dilithium routines.

Instead, one memory block is allocated on the stack in the root functions (i.e., di-

4https://gw‘thub.com/pq—crystals/d'ilith'ium

102

https://github.com/pq-crystals/dilithium

6.6 Results & discussion

*93UeI WS 19A0 9111 Jey) sdoof
9]BD1pUT WIY)LIOS . S} Ul SMOLTY "90B[d-UT PIYIPOUI ST J1 “9'T Pawuivua. ST J[qRLIBA B Jel[} 9J0USP SISLLIRq Pajjo "UIyjLIos[e
31[} UI pasn S3[qeLIBA Y]} JO SIUITIIJI] S} 2JBIIPUT SIXO0(S, "dUIT} UT U0Issa1301d YY) SMOT[S UOTIOIIP [BIT)ISA Pasn dIe Jey])
S]O[s AIOWISW 3} SMOT[S UOTJOIIP [BJUOZLIOH “WIYILIOS[e UOTJRISUAS A9 WNIYI[IJ Y3 JO UOT)BIO[[e AIOWSIN :Z'9 9In3I]

ndino o3 3 aqum <« (| d)H =: 1 "] HH

ndjno 03 /(%) agram —

(p“)’punoyziamod =: ((°) ") (&)
ndjno 03 '(19) a3am
(p*)’punoyziomod =: (~ (")) (&)
%)+ =:1 1

(1*,0)*spuedxy =: (%) ¢gpuedxy '(®s)

(Dr-LIN = 30 1 1
< e 7l . [— £
A>[5 0105y +=:37) | vpuedsy | 3
(Cs)LIN =: '("8) s
ndjno 03 ‘(*s) ajrim
3 1 — 1 1
(1,d)'spuedxy = ‘(*s) = 'spuedxy ('s)
0=:1 1
mdino 03 y ‘d aqum < ()Y =: Yy, d°d (DH d

802 201 89LY ¥9

103

6 Dilithium for memory-constrained devices

768 1024 208

=l =l |
tr H(p [t,)
H H(r | M)
SamplelnBall
H(u [wi)
#
Zj
w\.
w/ wi
T
Wi
m\

ExpandA

tr := H(p| t;)

1 = Hr | M)

¢ := SamplelnBall(¢)
wa absorb yinto H(u | wi)
0<j<e Awﬁ\ =0

read z; from signature
check 2. <, - §

7, 1= NTT(z) R

(Wy); = (W) + A0 7

w := NTT (W,

T :=c-(t,), 2 > schoolbook multiplication
w oi=w - T

unpack hints from signature into h
check PopCount(h) < w

wy; 1= UseHint,(h, W}, 2y,)

___ absorb w,; into H(u | w})

¢ +=H(u|w))
check¢=¢

Figure 6.3: Memory allocation of the Dilithium signature verification algorithm. Horizontal direction shows the memory
slots that are used. Vertical direction shows the progression in time. The boxes indicate the lifetimes of the variables used
in the algorithm. Dotted barriers denote that a variable is renamed, i.e., it is modified in-place. Arrows in the algorithm
indicate loops that iterate over some range. All temporary values are denoted by a T;.

104

6.6 Results & discussion

lithjum_keygen, dilithium_signature, and dilithjum_verify)and passed to the
internal functions.

As opposed to the previous works that only support a single Dilithium variant at
a time, selected using C preprocessor macros at compile time, our implementation
integrates all variants at the same time, and the variant is selected by the user at

runtime as in typical in cryptographic software libraries.

Results. We integrated our implementation into a local fork of the benchmark-
ing framework pqm4 [PQM4].°> We compared the memory footprint and the exe-
cution times of our implementation to those of the Dilithium implementation in
PQClean [KSSW22], the Dilithium-round-3 updated port of [GKS21] in pqm4, and
the recent implementation results from [AHKS22].6

It should be noted that all of these implementations have different goals and imple-
mentation methods, so evaluating the benchmarking results is not as straightforward
as just comparing performance numbers. Firstly, the PQClean implementation has
been published as a “clean” implementation of Dilithium. Its main goal is to provide
an implementation of Dilithium, written purely in C, that works cross-platform and
follows best coding practices. It has been written with performance in mind and
ensures a running time independent of secret-key-related material. However, it does
not include any platform-optimized assembly code which has the potential to greatly
improve the performance. On the other side, there are the pqm4 ([GKS21]) and
[AHKS22] implementations. These implementations are specifically hand-crafted for
the Arm Cortex-M4 platform and are highly optimized for performance (i.e., reducing
the number of required cycles) and large parts of these implementations are written
in Armv7 assembly. We also include the “strategy 3” implementation from [GKS21]
(i-e., Section 6.2), but unfortunately it is hard to compare directly since that implemen-
tation is based on round-2 parameters of Dilithium which are significantly different
compared to the latest (round 3) ones. As an indication, the round-2 Dilithium3
memory usage of signature verification and generation using this strategy are in both
settings 10 KiB: significantly less compared to previous work but still too large for

the embedded devices we target in this chapter.

5Commit hash e47864b3, forked on 8 Oct 2021.
®As of early 2022, this implementation has replaced the port of [GKS21] in pqm4.

105

6 Dilithium for memory-constrained devices

Our implementation is designed with a different goal in mind: it is a cross-platform
C implementation that optimizes in the first place for memory usage to ensure it can
execute on memory-constrained (< 8KiB) platforms. It makes a significant amount of
sacrifices in terms of performance and does not contain any routines that are specially
optimized for the Cortex-M4 (the techniques presented are platform independent).
Therefore we expect the pqm4 implementation from [GKS21] (Chapter 4) and the
implementation from [AHKS22] (Chapter 5) to outperform this implementation on
Cortex-M4: we use a slower approach and a generic implementation. In order to
assess the impact of the proposed techniques we remove the optimized assembly
implementation from the equation and compare to the generic PQClean implementa-
tion. We include the performance figures of the other implementations for the sake
of completeness.

An overview of the results is provided in Table 6.2. The testing followed the method-
ology described in Section 2.6.2. We used the STM32F4 Discovery board, which is
based on the STM32F407 microcontroller. Our implementation was benchmarked
using the pqm4 framework. To obtain the cycle counts we measured 10 000 execu-
tions and computed the average. The results for the pqm4 ([GKS21]) and [AHKS22]
implementations are based on the results listed in [AHKS22]. The code was compiled
using GCC version 9.2.1,7 with optimization level -0s.

In Table 6.3 we have listed the code sizes for all the implementations that we
compare in Table 6.2. We have measured these code sizes using the same settings
as for the memory/performance measurements. Because the [GKS21] pqm4 and
the [AHKS22] implementations are optimized for speed, we have listed their code
sizes for the optimization levels -03 and -0s. In these metrics, the contribution of

symmetric primitives—e.g., the size of the SHAKE code—has been excluded.

Discussion. The memory footprints reported in Table 6.2 for the presented tech-
niques are close to the lower bounds provided earlier. The discrepancy in memory
use is around 0.4 KiB of memory for all algorithms. The largest contributor to this
additional memory use is the execution of SHAKE. The SHAKE code, which has been

unadapted from the Dilithium reference implementation uses around 300 bytes of

7arm—none—eab'i—gcc (15:9-2019-g4-0ubuntul) 9.2.1 20191025 (release) [ARM/arm-9-

branch revision 277599]

106

6.6 Results & discussion

‘11 170ddns 03 Wy YSnous aABY 10U S90P 9ITAIP 3} ISNBII pa[qesIp uonjejuawa[duy ,

91921 4 LT | e6¥TL , LT | 980F LA LT | A

2EE T I'8 | €069¢ L, SS9 |O0LFST L 0O S JNI0oM STYT,

6098 A 6L |2TIIS A %9 | L6 L 6% | M Auo
- - 999 ¢ ¥95 | €zee se | A o)
- e L8621 L'LL | %€08 L£0Ss | S [eemssM] ues[d0Od
- - $05 € ¥'6S | sz0¢ vLe |

LOL¥ 806 | 269¢ 996 | 2LST zse | A

928 eeIT | %299 ¥L9 | €80% 6Ly | S [2ZSHV]

878 ¥ L'S6 | 0£8¢ 9'65 | 865T L | wse

8IL¥ 806 | 00LC 996 | 6L5T zse | A s

096 8 €11 | 2HLY €L | 612¥ 6LV | S (pwbd) [12$MD]

Ge8 ¥ L'S6 | s€8¢ 965 | 2091 L | M

g§S T[e10) 8S 100 8S T[e10)

o0y ant S| any 20y an] jueLIRA

swniyupq gwniyupg wniyug

‘SUOTJRIAI ()00 0T I9A0 PISBISAL 2I9M SJUNOD IIAD [[V “A[oA1}0adsar AJLiap pue ‘usIg ‘UanAd))
saanuiid Sutudis a3 0] puodsariod A pue ‘G Y ‘suonejuawa[dunr H)-aind axe YIoM STYT, pue [ZZMSS] Ued[d
-0d FIN-X0110)) 10] A[quiasse pazrumdo apnpour jey3 suorjejustwodwr axe [gzSHV] pue (Fwbd) [12$3D]
Sy (993) sopAdo0[n] pue (gry) S9IAQIQIY Ul wniy|ig I0J sjunod 904> pue adesn AIOwLy :Z'9 I[qeL

107

6 Dilithium for memory-constrained devices

Table 6.3: Code sizes of the implementations from Table 6.2 expressed

in bytes. Opt-level denotes the optimization level that was used. Contri-

bution of Keccak and AES code is excluded from all implementations.
implementation opt-level Dilithium2 Dilithium3 Dilithium5

[GKS21] (pqm4) -03 10 564 10092 -a
[AHKS22] -03 18 448 19916 18262
[GKS21] (pqm4) -0s 9700 9276 -a
[AHKS22] -0s 17 408 19012 17 234
PQClean -0s 6986 6534 b
This work -0s 10091° 10091° 10091°

4 Not reported by pqm4.

b Implementation disabled because the device does not have enough
RAM to support it.

¢ Implementation includes support for all Dilithium variants.

stack. The last 100 bytes are found in call-tree information and temporary buffers
used during the packing and unpacking of polynomials into bit-arrays.

Table 6.2 clearly shows that the proposed techniques pay off. The states of both
Dilithium2 and Dilithium3 for signature generation, verification and key generation
easily fit into 8 KiB. It should be noted that none of the other high-speed implementa-
tions can execute on devices even with 32 KiB of memory. The amount of headroom
arguably allows for plenty of other tasks to run on the device; 3.0 KiB in the case of
Dilithium2 and 1.4 KiB for Dilithium3. The memory footprint of Dilithium5 signing
Jjust exceeds 8 KiB. For Verify, the memory footprint is reduced to 2.7 KiB.

This is of course only half of the story. The memory reduction techniques have
a clear impact on the performance of the scheme. When comparing cycle counts to
those of the PQClean implementation (which is the implementation most similar to
ours), one observes a factor 2.3-2.8 slowdown for Sign and a factor 1.8-2.0 slowdown
for Verify. For both algorithms, the difference in performance is due to the overhead
from the (24-bit) bit-packing operations in the matrix-vector multiplication, and
the slower schoolbook method for multiplying cty. For Dilithium3 signing there is
some additional overhead, because the ¢’ = 769 NTTs are somewhat slower than the
q’ = 257 NTTs in the other variants.

Optimization efforts from [GKS21] and [AHKS22] have lead to a 43%—-44% reduction
of cycles in Sign compared to the PQClean implementation. Similarly, one can expect

108

6.7 Conclusion

that future performance enhancements will be able to improve the performance of
our implementation of the memory reduction techniques as well. Depending on
the platform, integrating more optimized assembly implementations for SHAKE,
(inverse) NTT, and challenge multiplication could result in significant performance
gains. In particular, many of the values in the challenge multiplication are 8 bits, This
is suitable for parallel computation using SIMD instructions, which are not used in
our C-implementation.

More importantly, many of the memory-constrained devices come equipped with
dedicated cryptographic coprocessors for symmetric primitives (such as SHAKE) as
well as for big-number arithmetic. When one can make use of these coprocessors,
the execution times could be reduced drastically: especially because SHAKE remains
a dominating component of the Dilithium execution time as well as the polynomial
multiplication [BRV22].

Although the reduction of the run-time state has a big impact on the execution
speed of the algorithm, we see from the results in Table 6.3 that this is not the case
for the code size. The code for our new implementation is slightly bigger than the
PQClean code, but about the same size as the optimized implementations.8 Moreover,
we must take into account that our implementation supports all variants of Dilithium

at the same time, so a slight increase is actually expected.

6.7 Conclusion

Although there is considerable performance impact when implementing Dilithium
in a low-memory environment, we have shown that such low-memory Dilithium
implementations are feasible in practice. In particular, we broke the 8 KiB memory
barrier for Dilithium2 and Dilithium3. Dilithium5 uses a little bit more memory than 8
KiB, but we have shown that there are still time-memory tradeoffs that can be applied,
even though these tradeoffs are relatively expensive in terms of performance.
When earlier work (like [RGCB19]) was published, it was not clear whether Dilith-
ium was a scheme that could even be considered for memory-constrained devices.
Then [GKS21] showed that the Dilithium algorithms could reasonably fit into 16 KiB

of memory. In this chapter, we show that most variants of Dilithium can even fit

81t is clear that the handwritten assembly in the [GKS21] and [AHKS22] implementations—which is very
aggressively loop-unrolled—comes at a significant cost in code size.

109

6 Dilithium for memory-constrained devices

into 8 KiB without a very drastic impact on performance. More so, we reduced the
memory footprint for Dilithium verification to below 3 KiB. For memory-constrained
devices, storing Dilithium’s public keys and signatures has arguably become a bigger

challenge than storing its run-time state.

110

7 Post-quantum secure boot on

vehicle network processors

7.1 Introduction

Up to this point in this thesis, we have only focused on the implementation of Dilithium.
In this chapter, we will look at the usage of Dilithium in larger embedded systems. In
embedded systems, one typical use for digital signatures is for verifying that the code
that runs on a device has not been tampered with. For example, firmware updates
are usually authenticated by the software vendor using digital signatures. Some
devices can also be configured to verify the firmware’s signature again during boot,
preventing the malicious modification of the code after the code is installed on the
device.

Because of this, these signatures serve as the basis of trust for any other applications
running on the system, and are critical for providing safety and security to automotive,
edge, industrial, and many other domains. For example, modern cars feature service-
oriented gateways that are responsible for transferring data between various vehicle
networks, handling over-the-air (OTA) updates, communicating with the cloud, etc.
For these kinds of devices, it is critical for the safety and security of a driver that they

are securely booted and updated.

7.1.1 Secure boot

The goal of secure boot is to guarantee integrity and authenticity of the software
running on a system. Although there are different ways in which to achieve this,
ultimately the confidence in a system leads back to a so-called Root of Trust (RoT).
For example, an RoT can consist of executable code and (hashes of) keys in Read-

Only Memory (ROM) that performs various initializations, verifies the authenticity

111

7 Post-quantum secure boot on vehicle network processors

of the firmware, and finally passes control to the (now authenticated) firmware.
The requirements on RoTs are well-documented by various organizations, e.g., see
TCG [CG19, Part 1 §9.5.5] or GlobalPlatform [GP18], and its implementation should
hold up against strong testing and certification (e.g., ISO 26262) requirements. In
particular, in order to prevent any of the ROM code being modified, or executable
instructions skipped altogether, the RoT should be protected against physical fault
attacks [BDL97; BS97].

Since both security requirements as well as cost of implementation for RoTs are
high, their design typically aims to provide the necessary security requirements with
minimal footprint. As such, in most modern systems the boot flow is not completed
when the ROM code passes on control. Instead, more advanced features are offloaded
to a (second-stage) boot loader, which is verified by ROM code and made responsible
for the remainder of the boot sequence. Of course, this boot loader can in turn
verify and advance control to the next stage, creating a chain of trust. In complex
ecosystems distinct parties can be responsible for the different stages in the chain:
while immutable hardware such as ROM needs to be established at manufacturing
time by a Tier-1 or Tier-2 supplier, second (or higher) stage boot loaders can rely
on memory that is programmed only later in the process by Original Equipment
Manufacturers (OEMs), for example. This chain can extend all the way to end users

running their Operating System (OS) of choice.

7.1.2 Post-quantum digital signatures for secure boot

As far as we are aware at the time of writing, all widely used and deployed ap-
proaches to realize digital signatures in the embedded space are either based on
elliptic curves [Kob87; Mil86] or RSA [RSA78]. As such, the well-known threat of
the realization of a quantum computer applies here as well: if large-scale quantum
computers are to become a reality, Shor’s algorithm [Sho94] will be able to recover
ECC/RSA private keys in polynomial time. In the context of automotive network
processors, such a development would allow an attacker to sign their own firmware
updates, and install their own (unauthorized) code on the device. Even though this
scenario might seem far away, cars will often operate on the road for multiple decades;

as such, their security measures have to be able to sustain decades of attacks. There-

112

7.1 Introduction

fore, we cannot delay evaluating the impact of using post-quantum cryptography for

their secure-boot setups.

7.1.3 Related work

Sanwald, Kaneti, Stottinger, and Bohner performed a thorough investigation of se-
cure boot in the automotive domain [SKSB20]. Integration of post-quantum secure
key exchange and digital signature verification has been studied before. The main
investigations have been around hash-based signature schemes, since they have
already been standardized by NIST [NIST20b]. They come with some potential dis-
advantages of requiring to keep a state during signature generation. An impact
assessment of hash-based post-quantum secure schemes on secure boot is studied
by Kampanakis, Panburana, Curcio, and Shroff [KPCS20]. Hermelink, Péppelmann,
Stottinger, Wang, and Wan perform an investigation into Authenticated Key Exchange
(AKE) combining XMSS and NewHope [HPSW*20], while Feritzmann, Vith, Florez,
and Sepulveda analyze lattice-based key encapsulation mechanisms (KEMs) for auto-
motive systems [FVFS21]. Also, Kumar, Gupta, Chattopadhyay, Kasper, Krauf§ and
Niederhagen [KGCK*20] investigate how hash-based schemes can be integrated into
a secure SoC platform around RISC-V cores and evaluated on an FPGA.

As far as we are aware, the integration of lattice-based schemes into the secure-boot
flow has been not investigated before. In this work, we focus on the NIST signature
finalist Dilithium. Dilithium is often considered for embedded applications due to its
favorable runtime and relatively small size, for example, the embedded implementation
from [GKOS18; RGCB19] and the improvements presented in Chapters 4 and 6.

7.1.4 Contribution

We investigate the practical impact of protecting the secure boot flow for vehicle
network processors against quantum attacks. This is realized by integrating the
Dilithium digital signature scheme into the secure boot process of the S32G platform.
As part of this work we created a fault-attack resistant (against single-targeted faults)
Dilithium signature verification algorithm, which uses significantly less memory
than the state-of-the-art. This implementation was integrated into the S32G HSE
secure boot flow (cf. Section 7.3). We have measured the latency of our Dilithium

verification algorithm in a regular setting and using pre-hashing with SHA256. Our

113

7 Post-quantum secure boot on vehicle network processors

results (Section 7.3.3) make it clear that the usage of post-quantum cryptography does
have an impact on the (one-time) installation time of an application image. However
after installation, the S32G uses a reference proof instead of verifying the original
signature, which means that the boot time is not affected by the signature scheme.
We evaluate these results and find that the impact is fairly minimal: a transition to

post-quantum secure boot can be considered practical for this application.

7.1.5 Organization

We begin with a description of the S32G automotive platform and its (secure) boot
flow in Section 7.2. In Section 7.2.2 we describe the process and results of integrating

Dilithium. Finally, we present our conclusions in Section 7.4.

7.2 S32G vehicle network processors

7.2.1 Platform description

In this work, we use the S32G vehicle network processor as the target platform for the
impact assessment of integrating post-quantum cryptography in the secure boot flow.
This high-end platform is developed by NXP Semiconductors and part of a larger S32
product family which includes the S32R, S32K and S32S and is designed to meet the
safety and security requirements in the automotive and industrial domains (i.e., compli-
ance with IEC 61508 [IEC10] and ASIL-D classification in ISO 26262 [ISO18]). Typical
uses include service-oriented gateways, domain controllers, vehicle computers and
safety processors. The S32G consists of a combination of microcontrollers (MCUs)
based on the Arm Cortex-M7, and microprocessors (MPUs) based on Arm Cortex-A53.
These are combined with several types of memory (SRAM, DRAM, NOR/NAND Flash)
and various hardware accelerators. Most notably, it contains a Hardware Security En-
gine (HSE) which supports both symmetric and (classical) asymmetric cryptography
accelerators, a random number generator, and dedicated secure memory. The HSE is
also powered by an Arm Cortex-M7 core and serves both as a secure environment
for host applications, as well as being responsible for (part of) the boot flow if secure

boot is enabled.

114

7.2 $32G vehicle network processors

The precise configuration depends on the choice of model: we deploy the S32G274A
which contains 3 Arm Cortex-M7 cores, 4 Arm Cortex-A53 cores, and 8 MB of system
RAM. Each of the MCUs runs in a delayed lockstep configuration at a maximum
frequency of 400 MHz and has 32 KB instruction and data caches. The MPUs are
configured as 2 clusters of 2 cores each running at a maximum frequency of 1 GHz.
Every core has access to 32 KB L1 instruction and data caches, while each cluster
shares another 512 KB of L2 cache. Optionally, the A53 clusters can be configured to
also run in a delayed lockstep setting, effectively removing one of the clusters from

an application’s point of view but increasing the fault tolerance.

7.2.2 Secure boot on the $S32G274

The S32G274A provides two modes of startup, a normal start-up sequence (also
referred to as “normal boot”) and a secure start-up sequence (also referred to as
“secure boot”). The secure boot process involves a series of stages. In each stage, a
new piece of code is executed after passing all necessary checks for authenticity and
optionally decryption of the protected content. In case the authentication fails, the
related CPU subsystem remains in reset, potentially rendering the device inoperant,
or at least not operating as originally designed for the targeted application.

In the secure startup process, the S32G starts operating a trusted-boot stored
Read-Only Memory (ROM) firmware (BootROM), that is responsible for verifying,
decrypting, and loading the HSE Security firmware (HSE-FW) into HSE secure mem-
ory before handing over the control to it. Once HSE-FW is up and running, it is
responsible for initiating the next boot stage, by verifying and optionally decrypting
the Application (Bootloader), before starting the Application CPUs. The authen-
ticity check is based on cryptographic primitives. In particular, digital signatures
schemes that are supported for authenticating application images are RSA [RSA78]
with various padding schemes [PKCS198], ECDSA [SECGO00], and EdIDSA [BDLS*11;
NIST23b].

The HSE requires three essential components for the boot sequence, which need to
be installed before enabling secure boot. For example, this can be done by executing
an application that performs the installation via the normal boot sequence, or through
the serial interface. Firstly, any user keys (i.e., those not already in ROM) that are to be
used by the HSE-FW to check the authenticity of the application need to be provisioned.

115

7 Post-quantum secure boot on vehicle network processors

reset

verify signature, verify signature, verify signature,

decrypt and load optional decrypt NUU:GNEOJ optional decrypt

BootROM application
(bootloader) PP
1st boot stage 2nd boot stage 3rd boot stage

execution HSE Application CPUs

context:

Figure 7.1: Secure boot flow for the S32G274A.

116

7.3 5$32G274 Post-quantum Secure Boot

Secondly, the application images need to be installed in non-volatile memory. This
is done with the use of Secure Memory Regions (SMRs), which are regions in Non-
Volatile Memory (NVM) defined by an address, a length, and an (initial) proof of
authenticity (e.g., a digital signature linked to a previously provisioned key). Finally,
the user has to specify the Application CPUs for which SMRs require verification
before continuing with the boot flow (and which sanctions are applied on failure).
The Application (Bootloader) and the Application can be associated with one or more
SMRs. The HSE secure boot configuration can be locked by advancing the device

lifecycle, which disables any future changes to the configuration.

It should be noted that the above description is a very high-level view: in reality, the
S32G274A boot sequence is highly configurable and supports a multitude of options.
A particularly interesting one is the ability to use reference proofs of authenticity
for SMRs. On initial SMR installation, the HSE-FW will check the initial authenticity
proof that was stored in non-volatile memory (e.g., the digital signature). If the initial
authenticity proof verifies correctly, the HSE-FW computes a reference authenticity
proof that is stored internally in the HSE. As the application has already been authen-
ticated with an initial proof of authenticity, the requirements on the reference proof
are lighter. Therefore verification of the reference proof can be much faster than
the initial one. During secure boot, the HSE-FW only verifies the SMRs by checking
the reference proofs, significantly speeding up the boot procedure. The S32G also
supports runtime (periodically or on-demand) attestation, meaning that SMRs can be

verified (initial or reference) during the execution.

7.3 S32G274 Post-quantum Secure Boot

In Section 7.2.2 we summarized the S32G platform and its boot flow. In this section, we
describe our Dilithium implementation for the HSE core and how this was integrated
into the HSE-FW to support its signature verification in the boot flow. Finally, we
discuss the installation of the secure memory regions selecting features that are most

appropriate for our setting.

117

SMR Verification Flow

SMR Installation Flow

secure boot secure boot

7 Post-quantum secure boot on vehicle network processors

installation request user NVM verification request
A k
! SMR '

- “ - - » 1 . 3 . . E
<a9ﬁ< application Avoo:owmm._.v read 1 application ' read <m:Q application (bootloader)
(using the proof of authenticity + (using the reference proof of

. 1 (bootloader) ! o
provided) , 1 authenticity)

1

" ! |

1 initial proof "

X of authenticity I

no yes 1 !
1 1

secure NVM
mmm e m e - .
calculate internal write reference proof release the application

CPU from reset

proof of authenticity of authenticity

l

end
(success)

end end
(fail) (success)

Figure 7.2: Overview of booting using Secure Memory Regions.

118

7.3 5$32G274 Post-quantum Secure Boot

7.3.1 Dilithium software

The Dilithium submission to the NIST standardization effort is accompanied by various
implementations [LDKL*20]. Some of the parameter sets for Dilithium have also been
integrated and optimized for pgm4: a testing and benchmarking framework for the
Arm Cortex-M4 [PQM4]. The implementations supported in pqm4 provide a good
overview of the state-of-the-art performance of the post-quantum algorithms within
some constraints related to the Arm Cortex-M4 platform. For example, the total
memory available is 112 + 16 KB (SRAM1 and SRAM?2). Moreover, it should be noted
that these implementations ensure a runtime independent of any secret key material
but are not protected against active [BDL97; BS97] (faults) or passive [KJJ99] (side-
channel) attacks. For critical applications, such as secure boot on vehicle network

processors, protection against these advanced attacks is often a minimal requirement.

We implemented the Dilithium algorithms for all parameter sets from scratch and
ensured they comply with the proposed specification and pass the Known-Answer-
Tests provided in [LDKL*20]. Our main focus is on the signature verification since
this is the only functionality required in the secure boot flow. For verification the
protection against passive attacks is not relevant; a side-channel attack tries to deduce
information about the bits of the secret key material used during execution based
on, for instance, the observed power consumption of the device. However, no secret
key material is used during signature verification. Protection against fault attacks
is required since it would be trivial to force acceptance of a wrong signature by
introducing a well-targeted fault in the implementation. Our implementation includes
countermeasures against single-targeted fault attacks: this is achieved by both adding
countermeasures protecting the control flow as well as algorithmic checks to ensure

no steps are skipped or memory regions have been altered.

As can be observed from the pqm4 benchmarking framework, the stack consump-
tion of Dilithium is significantly larger compared to the classic public-key counterparts
(such as RSA and ECC). The stack requirement for signature verification for Dilithi-
um 3 reported by pqm4 is around 58 KB. Recent work [GKS21] has shown how to
reduce this stack to around 10 KB. Our fault attack resistant Dilithium verification
code requires less than 3 KB of stack for all parameter sets. This is a huge improvement
over previous works: still, it is an order of magnitude larger compared to signature

verification based on elliptic curves.

119

7 Post-quantum secure boot on vehicle network processors

There are two variants of Dilithium specified in the supporting documentation: the
main version where symmetric primitives for matrix expansion are instantiated with
SHAKE, and a second version where AES is used. The latter was included mostly to
demonstrate the efficiency of Dilithium on platforms which do not have support for
SHAKE yet or have dedicated hardware support for AES. In this work we only focus
on the recommended variant using SHAKE. For the SHAKE implementation we use
(a slightly modified version of) the assembly code published in the eXtended Keccak
Code Package! (XKCP).

7.3.2 Firmware integration

Given a functional Dilithium implementation, the next step is to update the HSE-
FW to support its use. This is made easy by the fact that the Dilithium signature
verification API (as mandated by NIST) is virtually identical to that of RSA and elliptic-
curve-based signature schemes. The main complications arise from the fact that the
memory use of Dilithium is higher, both in terms of key and signature size as well
as stack. However, keys still easily fit into the key catalog, while 3 KB stack can be
handled by the HSE. Hence we observed no significant obstacles in adding Dilithium
support to the boot flow.

In order to evaluate and benchmark the integration, we created a simple demo
application. For this purpose we require the compiled application images to be
accompanied by a Dilithium signature, for which we wrote a stand-alone command-
line tool. This tool was written in C, and was built around the avx2 implementation of
Dilithium from the CRYSTALS team.? Using our signing tool, we pack the compiled
application code into a flash image, together with a Dilithium signature and the
public key under which the code was signed, and load it together with our demo
application image into flash. We also use the demo application as boot loader. On first
boot, when secure boot is still disabled, the demo application loads the Dilithium key
and signature into the HSE. Following the description in Section 7.2.2, it installs our
application code in a Secure Memory Region using the attached digital signature, and
enables secure boot on the device. To verify whether the secure boot configuration

was effective, we can query the HSE Core Boot status, which contains the info on

1ht’cps ://github.com/XKCP/XKCP/blob/master/1lib/low/KeccakP-1600/ARM/
KeccakP-1600-1inplace-32bi-armv7m-le-armcc.s
thtps ://github.com/pg-crystals/dilithium

120

https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/ARM/KeccakP-1600-inplace-32bi-armv7m-le-armcc.s
https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/ARM/KeccakP-1600-inplace-32bi-armv7m-le-armcc.s
https://github.com/pq-crystals/dilithium

7.3 5$32G274 Post-quantum Secure Boot

which SMRs were correctly verified during boot. In our development setup we do not

advance the lifecycle of the device, as that would brick our development setup.

7.3.3 Performance results

Beyond validating that a functional Dilithium-based secure boot setup is feasible, it is
of course interesting to compare its performance to the status quo. When secure boot
is enabled, the boot latency is dominated by signature verification. Therefore, it is
sufficient to measure Dilithium verification latency, and compare it to the verification
latencies of a selection of other signature schemes.

The latency is not only determined by the choice of signature scheme, but also by
the length of the application image. All relevant schemes sign and verify in essentially
two steps. First, the variable-length message is pre-hashed down to a fixed-size digest,
possibly including padding, a public key, a commitment, etc. Afterwards the digest
is processed to create the final digital signature. Unfortunately, although this step
is essentially independent of the signature scheme, the choice of hash function does
slightly differ. For example, for ECDSA [ANSI15] a hash function specified in FIPS
180 [NIST15b] should be used (e.g., SHA-256) that is applied only on the message itself,
while in EADSA [JL17] pre-hashing is optional. The Ed25519 instantiation does not
pre-hash, reducing the message size implicitly together with a prefix in an application
of SHA-512, while Ed25519ph first explicitly reduces the input message using SHA-512.
On the other hand, the Dilithium signature scheme signs arbitrary-length messages by
hashing them together with the public key, using SHAKE-256. Although the choice of
hash function (assuming appropriate length is chosen) is independent of the security
of the public-key signature scheme, it can have significant impact on the performance.
More concretely, by offering hardware support for SHA-2 and not for (variants of)
SHA-3, the S32G274A offers a clear performance benefit for SHA-2. Therefore we
investigate two categories of variants: DilithiumX for X € {2, 3,5} where application
images are signed directly with Dilithium, and DilithiumX-ph where a SHA-256 hash
over the image is signed instead. To investigate the impact of hashing, we measure the
verification of a signature on both a small image (1 KiB) and a larger image (128 KiB).

We distinguish between the installation time of an application image where the
digital signature of Dilithium is verified (the original proof of authenticity) and boot

time where only the reference proof is verified. Of course, a user can opt to also

121

7 Post-quantum secure boot on vehicle network processors

Table 7.1: Latencies of installation (inst.) and boot in milliseconds for supported
algorithms on the S32G274A. Key sizes are reported in bytes. The pre-hash (ph)
variants of Dilithium first hash the image using SHA-256, and verify the Dilithium
signature over the hash.

algorithm size 1KiB 128KiB
pk sig inst. boot inst. boot
RSA 4K 512 512 2.6 0.0 2.7 0.2
ECDSA-p256 64 64 6.2 0.0 6.4 0.2
Dilithium2 1312 2420 12.1 0.0 1589 0.2
Dilithium3 1952 3293 17.8 0.0 1644 0.2

Dilithium5 2592 4595 26.6 0.0 1733 0.2

Dilithium2-ph 1312 2420 11.1 0.0 113 0.2
Dilithium3-ph 1952 3293 16.7 0.0 169 0.2
Dilithium5-ph 2592 4595 25.5 0.0 257 0.2

verify the proof authenticity on each boot, but the performance impact is large (even
in a classical setting), while there are no (significant) security benefits. Because
verification of the reference proof does not depend on the choice of digital signature
scheme, the boot time is actually not affected by switching to a post-quantum variant.
Although the installation for Dilithium is slower than for RSA and elliptic-curve based
variants, it is only performed once (or a few times) and its runtime is not as critical.
We summarize all of our measurements in Table 7.1.

From our benchmarks, we see that Dilithium verification of small images is 5-10
times slower than RSA 4K and 2-5 times slower than ECDSA-p256, depending on the
chosen post-quantum security level. The security level for Dilithium2, Dilithium3
and Dilithium5 is as at least as high as AES-128, AES-192 and AES-256 respectively,
for both classical as well as quantum adversaries, which can help guide in choosing
the appropriate security level for a use case.

When verifying small images, the Dilithium signature verification completes in
less than 30 ms for all variants. Looking at the results for the verification of larger
images without pre-hashing, we see latencies up in the hundreds of milliseconds.
As mentioned, this is almost completely attributed to the SHAKE-256 hash has that
is applied to the image. With additional SHA-256 pre-hashing, the large-image
verification latencies are almost equal to the latencies we measure for small images

122

7.4 Conclusion

(actually even lower). It is clear that without hardware support for SHAKE-256, the
image verification is dominated by the hashing of the image. In fact, even with pre-
hashing the dominating cost in Dilithium is the pseudo-random matrix generation
using the SHAKE-128 eXtendable Output Function (XOF). Hence, improved latencies
for SHAKE variants would significantly help for low-latency signature verification
using Dilithium. We do not observe this in the case of RSA 4K and ECDSA-p256, since
they hash the image using SHA-256 (for which hardware acceleration is present).
However, we re-iterate that the signature verification only impacts installation time
of the SMR and is irrelevant for the boot time, for which low latency is much more

crucial.

7.4 Conclusion

The main challenges that can be expected when migrating from classical signature
verification schemes such as RSA or ECC to post-quantum variants such as Dilithium,
are an increase in memory (keys, signatures as well as stack) and runtime. The
significantly larger public keys and signatures do not cause any real practical problems
on our target platform in the setting of vehicle network processors. Moreover, we
showed that in this setting of signature verification the amount of stack space required
for cryptographic operations needs to be increased only marginally. The performance
of Dilithium signature verification is indeed worse than that of ECC/RSA verification.
However, as this is only performed during installation time, there is no impact on
the boot time itself. We believe a transition to post-quantum secure boot can be

considered practical for this application.

123

8 Dilithium nonce recycling

8.1 Introduction

At its core, the Dilithium signature scheme is not unlike the Schnorr signature al-
gorithm [Sch90], i.e., a zero-knowledge identification scheme which is made non-
interactive using the Fiat-Shamir heuristic [FS87]. Such constructions are widely
used, for instance in the Ed25519 [BDLS"11] or MEDS [CNPR*23] signature schemes.

In Schnorr, signature generation starts by picking a nonce y at random. In Dilithium,
however, contrary to traditional Schnorr signatures, not every nonce y will result in
a valid signature. For correctness and security, the signature is subjected to several
checks. When any of these checks fail, a completely new y is sampled, and a new
candidate signature is generated and scrutinized in turn. Only when a signature
passes all the checks, it is output to the user. This construction, where candidate
signatures are generated until one of them passes the checks, is called Fiat—-Shamir
with Aborts (FSwA) [Lyu09].

In this chapter we demonstrate that one does not have to resample y completely.
Instead, for one of the four checks, we only need to resample parts of y. This allows
one to reuse computations involving the nonce between attempts and leads to a
speed-up in signing time in the order of 4-6%, depending on the platform and the

Dilithium variant.

Touching nonces in Schnorr signatures and ECDSA is considered to be a dangerous
affair. That is because many attacks have been published that have broken schemes or
implementations that reused nonces, or where nonce bias could be detected [AFGK* 14;
ANTT*20; BCP10; BH19; BvSY14]. We recognize this fact and carefully study the
security of our proposal: we show that the modified version of Dilithium is as secure

as the original.

125

8 Dilithium nonce recycling

Contributions. We start this chapter by giving a brief recap of Dilithium and the
relevant checks applied during the rejection-sampling loop of the signature generation
algorithm. In Section 8.3, we introduce a proposal to slightly optimize the Dilithium
signature generation algorithm by reusing some of the nonce material. In Section 8.4,
we examine the security of the scheme after (applying the) modification. In Section 8.5,
we look at the performance impact of the new construction, by first counting the
basic operations and then benchmarking optimized AVX2, Cortex-M4, and Cortex-M3

implementations.

8.2 Dilithium recap

In this section, we will give brief recap of the Dilithium signature scheme [DKLL*20]

and will go into more detail about the parts relevant to our optimizations.

The basic building block of Dilithium are polynomials of degree n = 256 with
integer coefficients modulo g = 223 — 2!® + 1 and the rule X?°® = —1 when computing

multiplication. Mathematically, these form the ring R, := Z,[X]/(X" +1).

The “size” of polynomials plays a crucial role in Dilithium. It is taken to be the size
of the largest coefficient, which is its absolute value, so both 1 and ¢ — 1 = —1 are
considered small. In Dilithium, this size is defined as the infinity norm, i.e., |_|, (see
Section 2.2).

The core of the private key are two small vectors over R;: s1 € Rg and sy € R](;
sampled uniformly with |$1 s, [S2lec < 7, Where 5, k and £ depend on the security
level. (For NIST level 2, we have = 2, k = 4, £ = 4, see Section 3.3.3.) The core of the
public key is a random k x £-matrix A over R, together with the vector t : = As; + s,.
It is hard to recover s and s, from t and this is known as the Module Learning With
Errors (MLWE) problem (Definition 3.1).

126

8.2 Dilithium recap
8.2.1 Underlying identification scheme

Dilithium is based [KLS18] on the following interactive identification scheme where a
prover having access to the private key, demonstrates this fact to a verifier that knows

the public key, without leaking any information.

prover veriﬁer

sample nonce y commitment wy
w; := HighBits(Ay)

sample ¢

Z:=y+csg challenge ¢

rg := LowBits(Ay — csp)
abort unless
lzleo <y1 — pand
Iroleo <v2— B

w;’ := HighBits(Az — ct)
accept if
|zl <y1 — pand

I‘espoHSe z

wi =wq

The prover generates a random secret nonce! y € REI with all coefficients in [y, y1)
(with y; = 217 for security level 2). The prover sends the commitment w; = HighBits(
Ay) to the verifier, where HighBits and LowBits decompose a vector x in the following

unique way (with y, = % for level 2):
HighBits(x) - 2y, + LowBits(x) = x and [LowBits(®X)|e < V2.

Note that the prover must only send the higher bits of w : = Ay for otherwise they
would leak y as A is likely to be invertible. After receiving wy, the verifier returns a
random challenge c € Rq with r non-zero coefficients, all either 1 or —1, (with 7 = 39
for security level 2). Now the prover computes the response z := y + cs;. Note
that ||cs] . is not very large, it is at most § := 7. Before sending the response, it

performs the following two checks on the sizes of z and ry := LowBits(Ay — csy),

!Nonce as in “number only used once” is misleading: y is neither a number nor is its single-use the only
requirement it should satisfy.

127

8 Dilithium nonce recycling

whose importance will become clear later on.

lzle < y1— B (z-check)
Iroloe < v2— 5. (rg-check)

If any of these fail, the prover aborts and restarts from the beginning. When even-
tually receiving a response (after typically around 3 restarts) the verifier accepts
whenever wy’ := HighBits(Az — ¢t) = wy and ||z|,, < y; — S.

Without the checks, the scheme wouldn’t always work. Indeed, in general
wy’ = HighBits(Az — ct) = HighBits(Ay —cs;) # HighBits(Ay) = w;

as even though csy has small coefficients (also < f) they might still carry into the
higher bits and so the verifier won’t trust the prover. This problem is solved by making
sure that the subtraction in Ay — cs, does not overflow into ry, which is ensured by
the ro-check [KLS18, Eq. 3]. A different issue is that ry and z might leak information
on respectively s; and s, if they have large coefficients. For instance, ifz; = y; + f— 1,
then we must have y; = y; — 1 and (cs1); = f. Both checks prevent this kind of
leakage.

The Dilithium scheme is accepting honest-verifier zero-knowledge (acHVZK): that
means we can replicate the distribution of (c, z) in successful sessions without having
access to the secret key.2 Not all (¢,z) can occur, but those that do, occur with
equal probability. Now, to simulate a session, pick random (c, z) with |z|,, <y — 5,
[LowBits(Az — ct)|o < y2 — B, and c as a verifier would sample it. Every pair (c, z)
that occurs in a real session could be generated as such: the first requirement is the z-
check and the second the ry-check because Az — ct = Ay — csy. Conversely, given
such a simulated pair, set y := z — cs;. This y could have been picked as |y|., < 11
for |csq]oo < B. With this nonce, the prover will pick the right response z. With the
first two requirements, we also made sure that the prover will pass the z-check and
ro-check. And so in the same way as we prove correctness in a regular run, we see

that the verifier will accept. Thus we can indeed simulate the sessions perfectly.

“The commitment w; is not included as in a successful session it is computed from the challenge and
response.

128

8.2 Dilithium recap

8.2.2 Vanilla Dilithium

As covered in Chapter 3, the identification scheme is turned into a signature scheme
using the Fiat-Shamir transform [FS87]. A signature on a message M is given by a
pair (¢, z) of a challenge ¢ and a response z of a successful interaction of the identifi-
cation scheme, where the challenge is not picked randomly by a verifier, but rather
computed as H(M | wy) for a hash function H that ranges over the challenge space B,.
After applying the Fiat—Shamir transform, we get the non-interactive signature gen-

eration algorithm as listed in Algorithm 8.1.

To check a signature, a verifier (like in the identification scheme) first checks |z, <
y1 — P and then computes wy’ := Az — ct, which should be equal to the original
commitment wj. The verifier does not have access to the original commitment
(as it was not included in the signature), but can check whether it was correct by
recomputing the challenge using the supposed commitment and comparing it against

the one included in the signature.

Algorithm 8.1: Simplified vanilla Dilithium

Signvanﬂla(sk = (A, t, S1, Sz), M)
1: kK :=0
2: sign: loop
3: forifrom Ouptof—1do
4: y; := ExpandMask(x); x :=x+1
5: wy := HighBits(Ay)
6: ¢ :=HWM |wy)
7: Z :=y+csq
8: if |z|., > y; — fthen > z-check
9: continue sign
10: if |LowBits(Ay — ¢sa, 12)|e = ¥2 — f then > ro-check
11: continue sign

12: return (c,z)

The full Dilithium scheme is rather more complex, as it includes tricks to decrease
signature and key sizes (such as only publishing the higher bits of t) while increasing
performance (by sampling in the NTT domain.) These details, however, do not impact

the security of the scheme or our proposal and will direct the curious reader Chapter 3.

129

8 Dilithium nonce recycling

8.3 Our proposal

In vanilla Dilithium, to create a signature, we randomly sample a nonce y and then
compute in sequence the commitment wy, challenge c and response z. Not every y
will lead to a valid identification session as the z-check or ry-check might fail. In that

case, we completely start over again with a new nonce y.

8.3.1 Resample only the prefix of y after failed z-check

Note that by the definition of the norm, the z-check involves the following ¢ subchecks,
one for each component of y: |(y + ¢s1);[, < y1 — B. If the first subcheck fails (without
having performed the other checks or subchecks), then instead of aborting completely
and resampling all elements of y, we propose to resample y; but keep y,, ..., y, for
the next iteration. This allows one to reuse the computations of A;jy; for j # 1, which
were required to compute ¢ via Ay. As Ay changes, the commitment w; changes with
high probability (cf. [KLS18, Lemma C.1]) and the challenge ¢ will be different after
this partial abort.

If z-check fails at y, (after y; passed) then we cannot reuse y,, because it will have
to pass the check for at least one other challenge c. This will introduce a bias in 'y,
although it is unclear to us whether this bias could lead to a practical attack. Instead
we propose to resample only y;, ..., y; if the first check fails at y; (and only having
checked y,,...,y;).

After resampling, this new y is computationally indistinguishable from a freshly
generated one. Indeed, its only bias is that y; 4, ..., y, has been used to compute the
previous challenge ¢, but we assume that the hash function H behaves as a random
oracle.

In Algorithm 8.2 we provide the first modified version of the Dilithium signing proce-
dure. We label the alteration® with alt-z and denote the algorithm with Dilithium,j_,.

In the new Sign,y,_, routine, the variable ¢ is introduced to keep track of how many

alt-z
y-elements are to be resampled after a failed z-check.

Note that signatures are compatible between vanilla and modified Dilithium: a
signature generated by one will be verified by the other. Indeed, we did not change the

verification routine. However, when using deterministic signatures, signing the same

3We say alteration (abbreviated as alt), instead of modification (abbreviated as mod), to prevent confusion
with modulo (also abbreviated as mod).

130

8.3 Our proposal

Algorithm 8.2: Reusing polynomials in y after partially checking z.
Sign, i, (sk = (A, t,51,8;), M)

Kk :=0¢&:=¢

2: sign: loop

3 for i from 1 up to £do > Only (re)sample the first £ elements of y
4 y; := ExpandMask(x); x :=x+1

5: wy := HighBits(Ay, 2y,)

6: ¢ € B, := H(M|wy)

7: Z :=y+csq

8: for i from 1 up to ¢ do

9: if |z, >y — fthen > z-check
10: E:=i

11 continue sign

12: E:=1¢

13: if |LowBits(Ay — ¢sa, 1)l = y2 — f then > rg-check
14: continue sign

15: return (c, z)

message using the same secret key will lead to two different signatures on the same
message if different implementations are used to sign the same message. Moreover,

the modified versions of Dilithium are not specification compliant.

8.3.2 Compatibility with streaming implementations

Some implementations (e.g. [GKS21, Strategy 3]), optimize for memory-constrained
environments. To use memory efficiently, they typically compute w = Ay one element

at a time where each component of A and y is generated on the fly.

With our modifications, we are not resampling exactly ¢ elements of y during each
loop iteration. Some polynomials y; might have been fixed some loop iterations ago,
using an old k that could have been forgotten. To ensure compatibility with other
implementations, the streaming implementation will have to keep track of the k values

that were used to generate the elements of y that are still in use.

131

8 Dilithium nonce recycling
8.4 Security

The security claim of Dilithium is strong unforgeability under chosen message attacks
(SUF-CMA), of which we have provided a high-level intuition in Section 3.2.4. The
original security proof is given in [KLS18] and its references. However, the proof of
the Fiat—Shamir with aborts (FSwA) heuristic was found to be incomplete. The gap
was identified in [BBDD*23; DFPS23] and the proof was closed. Using [BBDD*23],
we will show that that proof still applies, even though the value of € (denoting the
guessing probability of wy) might be reduced.

8.4.1 Adapting the ROM proof of [BBDD*23]

[BBDD*23] contains both a proof in the random oracle model (ROM) and a proof in
the quantum random oracle model (QROM). In this chapter, we will use the existing
ROM proof to analyze the security of our proposals, and leave the QROM analysis for
future work. To reduce the security of (vanilla) Dilithium from UF-CMA to UF-NMA
in the ROM, [BBDD* 23] uses a hybrid proof with three main steps: In the first hybrid
step, they replace the signing oracle Sign(M) with the Prog(M) oracle. Prog(M),
instead of querying a challenge ¢ : = H(M, wy) from the random oracle H, samples
¢ uniformly and programs H(M, wy) := c accordingly. In the second step, Prog(M)
is replaced with Trans(M), which hoists the random-oracle programming out of the
rejection sampling loop and programs the random-oracle once when an accepting
signature is found. Then, in the third step, Trans(M) is replaced with ZKSim(M),
in which the signature (wy, ¢, z) is generated by the simulator (instead of a signing
routine).

For the modified version of Dilithium, we will have to adjust the hybrid steps
to incorporate the nonce-reusing aspect of the scheme. In Figure 8.1, we list the
adversary’s oracle for each hybrid step. In these algorithms, Comm(sk) denotes the
commitment-generating part of the Dilithium algorithm. The modified-Dilithium
variant Commalt'z(sk, y, &) also takes the already-present vector y as input, plus €
which is the number of y elements that should be regenerated. Resp(wy,c,y) de-
notes the computation that generates z from wy, ¢, and y. Resp(wy,c,y) includes
the rejection-sampling checks, and returns L (indicating failure) if any of the checks

fail. The modified-Dilithium variant Resp®"?(wy, c,y) additionally returns an up-

132

8.4 Security

Signalt_z(M): Progalt_z(M):
Ly:=1 Ly:=1
2: f ={ 2: f =1
3: repeat 3: repeat
4 (w1,y) < Com?!t2(sk, v, &) 4 (w1,y) < Com?!t2(sk, v, &)
5 ¢:= H(Wl,M)It 5: H(wy, M) :=c < C
alt-z
6 ('z, &) < Resp®*(wy,c,y) 6 (28) — Resp(wy,c.y)
7: until z = L .
7: until z = |
8: return (wy,z)

8: return (wyq,z)

Trans®tZ(M): Sim22(M):
Ly:=1 1 (wy 6 z) « ZKSim¥t%(pk)
2: § ={
3. repeat 2: H(WI,M) =cC
. (Wi,y) < ComaIt‘z(sk, v.8) 3: return (wq,z)
5: c<C
6 (3 < Resp H(wy,cy)
7: until z # L
8 H(wy, M) :=c
9: return (wq,z)

alt-z alt-z

Figure 8.1: The oracles Signa't_z, Progalt_z, Trans®"Z, and Sim?"%, which are used

during the security analysis.

dated value for & which corresponds to how many elements of y are discarded and

regenerated during the next iteration.

In Section 8.4.2 we will quantify the security loss between the Signalt_Z(M) game
and the Trans?"?(M) game, based on the reasoning from [BBDD*23]. Then, in
Section 8.4.3 we list the modified transcript simulator, demonstrating that the signature
generation of Trans?'™2(M) is zero-knowledge. At that point, we have reduced the
construction from UF-CMA to UF-NMA. The rest of the security is unaffected in the
modified version of Dilithium.

133

8 Dilithium nonce recycling

8.4.2 From Signa"'z(M) to Trans**(M)

We copy and tweak the proof from [BBDD*23] to determine the new bounds for
alt-z

(gs qr)- Consider a collection of hybrid

Signa't'zaProg""“’z altz_ Trans

P
Ap,eo,e (qu C]H) and Ap:’e(:fe
oracles Hybk which program the random oracle (RO) during the first k iterations,

and make regular RO calls during the other iterations. This way we transform from

Sign?2 = Hyb’ into Prog?®™ = Hyb™ by each time replacing the oracle by an

oracle in which the RO is programmed one additional time. Likewise, we will replace

Sign®"% with Prog®t% in one of the adversary’s queries at a time.
Hyb (M):
Ly:=1
2: § =1
3:1:=0
4: repeat
5: (wW1,y) < Com?Z(sk, y, £)
6: if i < k then
7: H(wy, M) :=c« C
8 else
9: ¢ := H(wy, M)

10: (z,&) < Resp™%(wy,c, y)
11: i:=i+1

12: until z # 1

13: return (wy,z)

Figure 8.2: Hybrid signing oracle in which the first k iterations, the random oracle is

programmed, and the random oracle is called in all subsequent iterations. When in-
alt-z

creasing k, Hybk is gradually transformed from HybO = Signalt'z to Hyb™ = Prog

So, in total, we will have gs - k steps, where gs is the number of queries that the
adversary is allowed to make, and k is the number of iterations after which the
signature generation is aborted in its entirety. Consider the hybrid step (i, j) in which
the adversary’s queries 0 to i — 1 are answered by Progalt'z; before the step, query i is
answered by Hybj ; after the step, query i is answered by Hybj *1. and the adversary’s
queries i + 1 to gs — 1 are answered by Signalt_z.

Both scenarios behave identically, unless iteration j is reached during query i, and

(wq, M) is already in the domain of the RO. We can bound the probability of this bad

134

8.4 Security

event occurring by
i i .
CSi,j,gj = p]€j<_1 ~ + qH+]>,
where
« pis the rejection probability;

« € is a minimum bound on the guessing probability of wy during iteration j of
the rejection sampling loop;

. ﬁ oracle queries are included in the domain of the RO due to i previous

queries to Prog;

+ qp oracle queries are included in the RO domain because of the adversary’s
RO-query allowance; and
bj+1

« jqueries are included because at iteration j + 1, the Hy will have made j

queries to the RO during the same signature’s generation.

The value of 5l~’j,€j is the same as is reported by [BBDD*23], except for one aspect:
In [BBDD*23], the guessing probability of wy is a single constant, whereas with our
proposals the guessing probability of wy is not constant across loop iterations of the
signature-generation oracles.

With the proposal, the first iteration of the rejection-sampling loop generates
y and w; identical to vanilla Dilithium. As such, the guessing probability of the
first commitment (i.e.,) is equal to the guessing probability in vanilla Dilithium
(¢ in [BBDD"23]). However, subsequent iterations may reuse the tail of y. This
results in a correlation between the different commitment values, which increases
the guessing probability of €; where j > 0. We will get back to that in Section 8.4.4.
For now, we will just consider €, as the guessing probability of w; in iteration j = 0,
and e is the guessing probability of w; for iterations j > 0.

We take a sum over all the steps in this game hop, i.e., g steps for the number of

queries, and « steps for the number of Hybk hybrids. This results in a total loss of

qs—1 Kk—1 qs—1 Kk—1
Z (PK + Z 5i,j,ej) = Z (PK + (5i,0,€0 - 5i,0,e) + Z 5i,j,e) .
i=0 j=0 i=0 j=0

135

8 Dilithium nonce recycling

Taking the limit of k — o results in*

alt-z

gs—1 K—1
Sign?!"ZProg?t® .
Apere = lim (3 pK+@,o,eO—5i,o,e+205i,j,e
]:

i=0
—1 9H gs+1
<ot (s v an) ey v e BT s
O \ea-p M 1-p 7 a1-p)
We continue with the step from Prog®% to Trans?'Z, still closely following the

proof from [BBDD*23]. The new hybrid oracle Hyb, (the updated version of Hyb,
from [BBDD™"23]) is listed in Figure 8.3.

Hybj(M):
1y:=1
2 & :=¢
3i:=0
4: repeat
5. (wp.y) « Com*™%(sk,y, &)
6: c<C
7: if i > k then
8 H(wy, M) :=c« C

9: (z,&) « Respalt‘z(wl,c, y)
10: i:=i+1

11: untilz = L

12: if i < k then

13: H(W],M) =cC

14: return (wy,z)

Figure 8.3: Hybrid signing oracle in which, during the first k iterations, the random
oracle is programmed only once, and the random oracle is programmed every time

during all subsequent iterations. When increasing k, Hybk is gradually transformed
from Hybo = Progalt’z to Hyb°° — Transalt‘z,

Again, both scenarios behave almost identically. However, when iteration j is
reached and the candidate signature is rejected during that iteration, H has one more
(w1, M) pair in its domain. The bad event occurs when the adversary manages to

query H for that same (wy, M) pair. The probability of this bad event occurring is

“Derivation is listed in Appendix 8.B.

136

8.4 Security

bounded by
1] € P]CIHE

After taking the sum over all the steps and taking the limit of x — oo this results in
Sign®' P oy t=
ign'—Prog?!t ’
Apeof ,}5{}02(1’ +25116)
0

gqs—1)
= Z (5i,,0,€0 - (Si,O,e + Z 51,] e)

s ((60 —e)(1- p)qH _an)
1-p 1—p
€ + ple — &)

=9I, (8.2)

i=0

8.4.3 Zero-knowledgeness of Trans*"Z(M)

In Transalt‘z(M), z is computed element-wise, as z : = y + csq as always. At this point,
¢ is uniformly sampled from the challenge space B,, instead of being provided by the
random oracle. Consequently, c is now completely independent of y. Therefore, there
is no statistical dependence left between the elements of z, and after the z-check, z is
completely uniform.

As such, we can replace the computation of z with z <$¥ Sy,~p» computing ro as
rg := Az — ct. This leads to the ZKSim(pk) algorithm, as listed in Figure 8.4, which
perfectly simulates the transcripts of Trans®"(M). It is the same simulator as that of

vanilla Dilithium.

8.4.4 Min-entropy of w,

As we saw in the previous sections, the distribution of y is slightly different from
the distribution of y in vanilla Dilithium. This resulted in a separation from the
guessing probability of wy for the first iteration € and the guessing probability for

every subsequent iteration € in the security analysis. Each guessing probability is

137

8 Dilithium nonce recycling

ZKSim((A,t) := pk):

1: repeat
$
2: c<«< B;
$
Z «— S{”’__1

3
4 ry := Il-lighBits(Az —ct)
5: rg := LowBits(Az — ct)
6: until |rg|, <y — f
7: return (rq,c,z)

alt-z

Figure 8.4: Simulator for Trans®"* transcripts.

related to the min-entropy of the value by Ho(X) = —log, x where x is the guessing
probability of X.

For vanilla Dilithium it is shown that, with overwhelming probability, A is generated
such that the min-entropy of w is at least 117 bits [KLS18, Lemma C.1].> Even though
the appendix of [BBDD*23] has included a much more elaborate analysis of the min-
entropy of the commitment, for simplicity’s sake we base our reasoning on the original

Dilithium paper. We adapt their proof to our situation.

Recall wy = HighBits(w) and w = Ay. For brevity, write wy; := (wy);. Let Wbe
the set of those w with HighBits(w) = w;;. By definition of HighBits, the size of Wis
at most (2y, +1)". Note wy = Y. jAj .17} Assume for now that there is an invertible

element A; ; in the first column of A. Then

o S A - A -TAs)
0<j<t J#

Hence Y has the same number of elements of W. Crucially in our modification of

Dilithium, the distribution of y, is still uniform, and so the chance we get one that

leads to wy; is

#Y
PI’[YIEY] = E < (
14

2z + 1) . (8.4)

2y

SFor the original version of Dilithium as published in [KLS18] the min-entropy is with a high probability
(> 1— 2717 for Dilithium2) of at least 255 bits. With the updated parameters of Dilithium round 3, the
min-entropy is with an overwhelming probability (> 1 — 27%* for Dilithium2) of at least 117 bits.

138

8.4 Security

Thus, if there is an invertible element in the first column of A, then the min-entropy

of the resulting commitment wy is at least

2}’24‘1

—log, max Pr [y, € Y] = —nlog, > 117, (8.5)

Y€

resulting in a guessing probability of € < 27117, Therefore, we conclude that as long
as the assumption on A holds, the guessing probability of wy is not reduced. In other
words € = €.

A min-entropy of 117 seems low, especially because the min-entropy needs to be
much higher than the scheme’s claimed security level in bits. However in [KLS18] it
is noted that the bounded number of bits is probably far from the real min-entropy.
As the range of HighBits(A -) is very large, upwards of 2!7°%°, and heuristically close
to uniform, it is very likely that the min-entropy is much larger. Additionally, there
is another result [KLS18, Lemma 4.7] which shows that for smaller y; and y, the
min-entropy (which heuristically should then be smaller) is upwards of 1000 bits,
without needing an invertible element in A. Therefore, even if none of the elements
in A are invertible, it seems unlikely that the min-entropy of wy is ever dangerously
small in (the modified) Dilithium. Moreover, [BBDD*23, Appendix A] includes a
more thorough analysis of the min-entropy which again leads to an adequately low
guessing probability. At this point it is unclear to us whether that analysis is also

applicable to our modifications.

The assumption that the first column of A contains an invertible element is different

from vanilla Dilithium, where the invertible element can exist in any column of A. The

probability that some uniformly sampled polynomial is invertible is (1 - —) >1- —.

Thus, the chance that none of the polynomials in the first column of A is 1nvert1b1e

k
is at most (5) . This probability is the highest for the Dilithium2 parameter set,

where k = 4 and this probability is approximately 270, Technically, there is no single
unequivocal way to judge whether this probability is too high, because the UF-CMA
security model does not allow the adversary to trigger key-generation events and
we anticipate that the real probability is much lower. However, from a practical
perspective, even for random-chance events, 27 is just too high. Fortunately, we can
easily work around the issue by always regenerating the ith element of y instead of the

1st element, where i corresponds to a column of A that contains at least one invertible

139

8 Dilithium nonce recycling

element.® The overhead of this approach will be minimal, and the probability bound

will be completely restored (to 27460)

. A less complicated fix could be to increase the
minimum number of y elements that are to be sampled freshly. For example, when we
require that there are always at least 2 freshly generated y elements, the probability
is reduced to 27'2°, This still leads to considerable speed-ups for Dilithium. Still, we
encourage further research towards finding better bounds both for the min-entropy

of wy as well as the unlikeliness of A.

8.5 Performance

8.5.1 Operations saved

By not resampling the complete vector y every time a z-check fails, we save a bit of
computation time, that was originally spent generating y and computing w : = Ay.

Using a Sage script, we estimate the potential performance improvement by simu-
lating the rejection-sampling loop up to the second check. Note that this does not
include the expansion of A.’

The simulations count the number of y elements that have been sampled, and count
the number of calls to KeccakF1600_StatePermute (the SHA3/SHAKE primitive)
and NTT. For completeness, we also include calls to the inverse NTT (NTT™Y), even
though the number should be the same for both scenarios.® The results are listed in
Table 8.1.

For every mode of Dilithium, we reduce the number of y-component generations:
up to 20% of the total number of generated polynomials, in the case of Dilithium3.
This saving is reflected in the total number of KeccakF1600_StatePermute calls (14%
less) and the number of computed NTTs (16% less.) There is (as expected) no change
in the number of computed NTT™1s.

The theoretical counts provide a useful high-level intuition of the speedup that
our optimizations provide. However, as performance of these primitives (and their
subtle interaction) varies per platform, we continue with measurements on actual

implementations on various platforms.

®We also have to make sure that the corresponding element of z is checked first during the z-check.

To decrease the size of the public key, Dilithium does not store A in the public key, but rather a seed
from which A can be reconstructed.

8The slight differences in Table 8.1 are due to the stochastic nature of the simulation.

140

8.5 Performance

Table 8.1: Average number of sampled y elements, calls to KeccakF1600_StateP-
ermute, NTT, and NTT™? in the Dilithium rejection-sampling loop; using unmodified
Dilithium signing, and using the modification proposed in this chapter. Percentages
indicate the relative number of calls for each operation (lower is better). Averages
were computed over 100 000 runs.

baseline alt-z

y elems 17.30 (100%) 13.93 (80%)
Dilithium2 KeccakF 95.16 (100%) 81.65 (86%)
Hitnu

NTT 21.63 (100%) 18.25 (84%)

NTT ! 51.90 (100%) 51.90 (100%)

y elems 25.49 (100%) 21.38 (84%)
Dilithium3 KeccakF 158.05 (100%) 137.73 (87%)
mthium

NTT 30.59 (100%) 26.52 (87%)

NTT ! 86.67 (100%) 87.33 (101%)

y elems 27.18 (100%) 22.99 (85%)
Dilithiums KeccakF 182.47 (100%) 161.71 (89%)
mthium

NTT 31.06 (100%) 26.89 (87%)

NTT! 89.29 (100%) 89.60 (100%)

141

8 Dilithium nonce recycling

8.5.2 Optimized implementation

We have implemented the altered Dilithium signature scheme in optimized imple-
mentations for x64 with AVX2, Cortex-M4, and Cortex-M3, and benchmarked their

performance.

AVX2. For AVX2, we base our modified implementation on the round-3 code package
from the CRYSTALS team [DKLL*18].° Because of the relative abundance of RAM on
x64 platforms, we can easily cache all of the accumulated values in w. That is, we
keep in memory all the values A,»jyj fori=1,..kandj=1,...,¢L

In all implementations (i.e., including the baseline) we apply aggressive lane stuff-
ing. Le., we always generate four elements of y in parallel during the execution of
ExpandMask, and if we do not need that many y elements at that point; we precom-

pute elements for use in the next iteration of the rejection-sampling loop.

Cortex-M{4,3}. For the Cortex-M4 platform, we use the STM23F407 Discovery
board, which is based on the STM32F407VG microcontroller; for Cortex-M3, we use
the Arduino Due, which features an ATSAM3X8E microcontroller. We have ported
the reference implementation to each platform, and then applied the optimizations
described in [GKS21, Sec. 4].

In the context of post-quantum signature schemes, both of these boards have a
relatively low amount of SRAM. This makes it impossible to cache all components of
w, for which we would need another k x £ KiB of SRAM. Instead, on the Cortex-M

platforms, we cache only the value
w = A0,y,,¥3,...).

Storing this extra w’-vector only needs an extra k KiB of SRAM space.

Benchmarking setup. We benchmark the AVX2 implementation of Dilithium
using the benchmarking tool provided in the NIST submission code package. For the
AVX2 implementation, 100 000 iterations were run on an Intel Core 17-4770 (Haswell)

processor and its average recorded. On the x64 processor, all measurements were

9 Available for download at
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions.

142

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

8.5 Performance

done with Turbo Boost disabled, all Hyper-Threading cores shut down, and with
the CPU clocked at the maximum nominal frequency. The Arm Cortex-M4 and M3
implementations were benchmarked on an STM32F407VG and an ATSAM3X8E re-
spectively. The STM32F407 chip was clocked at 24 MHz and the flash wait states
were set to zero; the algorithm latencies were measured using the SysTick counter.
The ATSAM3XSE was clocked at 16 MHz and its wait states were also set to zero; the
measurements used the internal CYCCNT cycle counter. On Cortex-M4, the measure-
ments were averaged over 10000 samples; on Cortex-M3, the measurements were

averaged over 1000 samples.

Table 8.2: Average latencies of Dilithium signature generation on AVX2, Cortex-M4,

and Cortex-M3. Cycle counts are listed in kilocycles and include the computation

of A. Percentages report the total speedup of applying both proposals compared

to the baseline (vanilla) Dilithium. Note that these results cannot be compared

with [GKS21], because the parameters of Dilithium have been updated for round 3 of

the NIST competition (and so our baseline is an update of [GKS21, Strategy 2]).
baseline alt-z

AVX2 367 345 (6%)
Dilithium2 Cortex-M4 4458 4168 (6%)
Cortex-M3 7591 7275 (4%)
AVX2 564 532 (6%)
Dilithium3 Cortex-M4 7137 6889 (3%)
Cortex-M3 12316 12015 (2%)
AVX2 691 661 (4%)
Dilithium5 Cortex-M4 9447 9079 (4%)
Cortex-M3 -a -a

2 Not enough SRAM available to store Dilithium5
state.

Results. The results of our improved version of Dilithium are listed in Table 8.2.
We observe performance speedups ranging from 2% for Dilithium3 on Cortex-M3, up
to 6% for multiple configurations.

It should be stressed that all of these benchmarks include the setup stage of Dilithium.
This is the conventional method of measuring Dilithium’s performance. That is, the

measurements include the expansion of the matrix A and the initial NTTs of s, 8o

143

8 Dilithium nonce recycling

and ty. In cases where the generation of the matrix is relatively fast (e.g., when
the platform has hardware-acceleration for SHAKE), the setup stage will be shorter,

resulting in a greater relative speedup.

100
801
X
S 607
—
8,
=
S 40~
g
= 20 r original
j alt
0 ,

T T T T T T T
0 200 400 600 800 1000 1200 1400
latency [kec]

Figure 8.5: Probability of Dilithium3 signature generation on AVX2 to complete after
a latency of x cycles. The setup stage is illustrated by the red box that runs from 0 to
130 kcc. The average latency is marked with a dot.

Moreover, it has been argued by [RGCB19] and [GKS21] that this setup stage
often does not need to be computed during signature generation, but that it can be
considered as part of the key generation instead. To provide you with an intuition,
we have plotted the portion of Dilithium3 signature generations that finishes after x
cycles in Figure 8.5. The figure shows that when the setup stage is precomputed, the

relative speedup is 7% instead of 6%.

If we do not precompute the setup stage, the effect of an improved performance
in the rejection-sampling loop is still better for the worse-case runs of the signature
generation algorithm, because the latency of the setup stage is amortized. Indeed, if
we look at the 90% percentile, the speedup of our improved algorithm is 13%; and at

the 99% percentile, the speedup is 16%.

144

8.6 HAETAE

8.6 HAETAE

One of the submissions to the NIST competition for additional post-quantum digital
signatures [NIST22b] is HAETAE [CCDG™*23]. Like Dilithium, HAETAE is a Fiat—
Shamir-with-aborts scheme. Perhaps our proposals could also be applied to that
scheme.

However, after closer inspection we find that our proposals cannot be applied to
HAETAE. Instead of the infinity norm, HAETAE uses the £5 norm (or Euclidean norm)
in its rejection-sampling checks. In HAETAE, the £, norm of a vector v is computed
as |v], = m , which cannot easily be split into a number of subchecks.
One has to look at all the elements of v before one can conclude that v would lead to
an abort. However, after having inspected all the elements of v, all the elements of v
will have been significantly biased with the result of the check. This bias will remain
when reusing the values in the next iterations, which will result in non-uniform |z|
output values. We see no way to overcome this as long as the norms in HAETAE are
t,.

8.7 Conclusion

We propose an optimization to the Dilithium signature scheme, where we reuse parts
of the nonce vector y when an abort occurs on one of the rejection-sampling checks.
Our security analysis shows that the there is no additional security loss. In turn,
the modifications lead to a slight speedup for the Dilithium signature generation
algorithm, which ranges from 2% on Cortex-M3 for Dilithium3 to 6% for multiple
configurations.

Still, our security analysis depends on the Dilithium matrix A containing an invert-
ible polynomial in its first column.!® Even though we can mitigate this reliance using
extra logic, that logic would lead to very error-prone bookkeeping in the signature
generation algorithm, which is not ideal. Therefore, we leave it to the community
to decide which use cases allow for the implementation of these optimizations. In

any case, we encourage additional scrutiny of our proposals, as well as analysis on

0ne could consider modifying the key generation to only output keys with A matrices that have at least
one invertible element in the first column. However, this changes the distribution of A, which might
be in violation with the MLWE assumption.

145

8 Dilithium nonce recycling

better bounds of the min-entropy of wy, and the prevalence of insecure A matrices in
Dilithium.

Before our contribution, the iterations of the rejection-sampling loop of any Fiat—
Shamir with aborts scheme have always been completely independent. As far as
we know, our work is the first attempt at reusing values across iterations of the
FSWA rejection-sampling loop; and even though this chapter focuses entirely on
Dilithium, we would like to clarify that these kinds of nonce-reusal optimizations
could be applied elsewhere, if the rejection condition can be divided into subchecks.
Larger lattice-based zero-knowledge proofs, or schemes that sample their nonces
from Gaussian distributions in particular stand to benefit as sampling from those

distributions is expensive (e.g. [LNS20; Lyu12]).

8.A Resampling only y, after failed ry-check

In this section we propose a second possible optimization to the Dilithium scheme,
where we only resample the first element of y any time the ry-check leads to a reject.
We have not been able to completely show the security of this modification, however

we have also not encountered any clear reasons why it should be insecure.

8.A.1 Sign't™

Heuristically, as the ry-check only looks at the lower bits and A (being uniform) mixes
all components of y, resampling just y; should give a new independent chance for ry-
check to pass. Thus, a second proposal, is to resample only y; when the ry-check
fails, and to perform the ry-check before the z-check. Contrary to the other proposal,
the order of the checks is important. If we were to perform the z-check first, then it is
likely that we will have picked a y whose tail has passed the z-checks multiple times,
with different challenges c. This will bias y to have smaller values in its tail.!!

After swapping the checks and modifying Algorithm 8.2, such that only y, is
resampled when ry-check fails, we get Algorithm 8.3. We will call the new alteration

of the algorithm alt-ry. It can be applied independent of the other modification

1 Another way of looking at this is that we have to discard all vector elements that we checked during
the z-check. We can only reuse the polynomials that we have not looked at yet. Conversely, for
the ry-check, if any of the polynomials in ry exceeds the bounds, we have to regenerate at least one
polynomial in y.

146

8.A Resampling only y, after failed ry-check

Algorithm 8.3: Proposal 2: Reuse y,, ..., y; after aborting on ro-check.

Sign®tM(sk = (A, t, 5, 55), M)
Kk:=0¢:=¢
2: sign: loop
3 for i from 1 up to £do > Only (re)sample the first £ elements of y
4: y; := ExpandMask(x); x :=x +1

5: wy := HighBits(Ay, 2y,)

6: ¢ € B, := HM|lwy)

7: z :=y+csq

8: if |LowBits(Ay — ¢sa, 1)l = y2 — f then > ro-check
9: £E:=1

10: continue sign

1t if |z|o, > y; — fthen > z-check
12: E:=¢

13: continue sign

14: return (c,z)

described in Section 8.3; or it can be combined, compounding the speed improvements

of both proposals.

8.A.2 Security

The security reduction, from Sign'"™ to Trans?™ is the same as in Section 8.4.2. It
leads to the transcript generator listed in Figure 8.6. Unfortunately, we see no way to
perfectly simulate the transcripts generated by Trans®t™™, because the order of the
checks is swapped in alt-r.

In vanilla Dilithium, reordering the checks is allowed because the action that is
taken is the same regardless of the check (i.e., all elements of y are resampled). This
leads to z : =y + csy being completely uniform after the z-check, and as such it can
be generated as z <+ S;‘:l_ 8 in the simulator.

However, in Transalt_ro, the actions are different, as in the case of the ry-check &is
set to 1, while in the case of z-check & is set to £. So swapping the checks changes the

distribution of z, and simulating it as z < S;l_ 8 becomes invalid.

We hypothesize that we can use the hybrid Hyblg, listed in Figure 8.7, to step
towards a version of the scheme where a reject of the ry-check leads to all elements

147

8 Dilithium nonce recycling

Trans?tTo(M):
Ly:=1
2: § =1
3: done := false
4: repeat
5 yrg<Y
6: w; := HighBits(Ay)
7: c<C
Z =y +c8

9: ro := LowBits(Ay — cs)
10: if |rgle = y2 — B then

11: f =1

12: continue

13: if |z| > y; — f then
14: E=1¢

15: continue

16: done := true

17: until not done
18: H(wy, M) :=¢
19: return (wy,z)

Figure 8.6: Transcript generator for the alt-ry-modified scheme. Lines 5 to 6 describe
Com?'™0 and Lines 8 to 16 describe Resp®™.

148

8.A Resampling only y, after failed ry-check

Hyb5(M):
Ly:=1
2: f ={
3:1:=0
4: repeat
5. (Wp.y) « Com?tTo(sk,y, &)
6 c—C
7 if i > k then
8 (&) < Resp™™ (wy,c,y)
9: else
10: z < Resp (wy,c,y)
11: i:=i+1

12: untilz = L
13: H(WI,M) =cC
14: return (wy,z)

Figure 8.7: Hybrid signing oracle which, in the first k iterations, always sets & to £
when the z-check leads to an abort; and which in all subsequent iterations sets & to the
index of the element in z that lead to an abort during the z-check. When increasing k,

Hybl3C is gradually transformed from Hybg = Trans?'t™0 to Hybs = Trans.

of y being resampled. Then, as both checks will lead to ¢ := ¢, we can swap the
checks back to their original order, and the regular Dilithium simulator will apply
(Figure 8.4). In the rest of this section follows a heuristic argument that quantifies the
security loss of the hybrid step.

We replace Com?'tTo by Com and Respalt_r° by Resp respectively. Com always
regenerates all elements of y, while Com?'t™ takes £as an argument. Le., Com(sk) is
equal to Com®'™o(sk, 1, & : = £). Resp®'™ does differ from Resp: In Resp?t™_ if the
ro-check fails, then it will return & := 1. Resp is the same as in vanilla Dilithium, i.e.,
if the ro-check fails, then it will return ¢ := ¢ instead of ¢ := 1. The behavior around
the z-check remains the same, i.e., if the z-check leads to an abort the function returns
Ei=4.

The execution of Hybé and Hyb]3C+1 is equal when any iteration up to iteration
k leads to a success. Only in the next iteration k + 1 does the change of £ impact
the execution, because it may lead to a different value of y. This difference may

propagate to any of the subsequent iterations, leading to a change of output when the

149

8 Dilithium nonce recycling

algorithm finally succeeds. As such, the distance of the outputs of the two hybrids
will never be greater than the distance between the different ys during iteration k + 1.
In other words, we need to bound the distance between Comalt_r°(sk, y. £ =1) and
Comalt'r"(sk, v, & =1).

For convenience, define vi,j; = (vy, ..., vy) for any kind of v, Y the output distribution
of Com?/t™o(sk, y,£), and Y’ the output distribution of Com(sk) = Com?!tTo(sk, y,).
We aim to find a bound for the statistical distance

’ ’ 1 4
AY;Y) = A(Yta”;Ytail) = E Z |Pr[Ytai| = Ytail] - Pr[Ytalil = Ytail]’ :

gt—1
Ytail ESyl

Y:ail is equal to uniformly sampling from .§}€1_1, ie., Pr{Yeil = Vol = 1/#5;1_1. On
the other hand, Y;; only contains remaining y tails from the previous iteration. If
& =1, then the previous iteration will have aborted because of a rejecting ro-check.
In that case, we struck a y; value that when joined with y,;, (together with some A, ¢

and sy) led to a rejecting ry. Le.,

Pr(Yy =Yl = Y, Pr[V; =y, and Yo =y | ol > 12 — f]

YIE§Y1
1 Z Pr(ltole > y2 — B| Y1 = y; and Yiuii = yiail]
~€ _ :
= Pr [Itoleo > 2 — f]

In the literature, it has been heuristically assumed that the low order bits of r are
uniformly distributed modulo 2y,. If that is the case, the ryp-check rejection probability
is indeed independent of anything else, and the ratio inside the sum is equal to 1.
However, absurd examples like when A = 0 indicate that this cannot be the case. The
rejection probability depends directly on A. Fortunately, we can determine the range
of this probability for “reasonable” values of A. We will return to what “reasonable”
values of A could look like.

Consider the value Iy o10 = AtailYiail —¢S2. Which corresponds to the case thaty; = 0.
”LowBits(rproto)Hoo might exceed y, — 5, or not; we do not know. However, we can look
at every other value for y; and complete the expression. If H LowBits(rproto + Alyl)”w

exceeds y, — f, then any of the coefficients in rpoto + Ay; mod 2y, must be in the

150

8.A Resampling only y, after failed ry-check

range [y, — fB,y2 + f]. This can be arranged when any of the k - n coefficients in A, is
set accordingly. This probability is equal to

nk
p’=<1—ﬁ+l) , (8.6)

which is, unsurprisingly, equal to the heuristically computed probability that a random
ry is rejected [DKLL™20, Equation 5].

However, recall that we are computing the probability that a randomly generated
matrix A satisfies the property that ry leads to a reject for some o1, and y;. For a
number of m rejected ro, generated from a number of #5,, — 1 (i.e., excluding y; = 0)
different possible y;, the probability that A satisfies that number of rejects follows
the binomial distribution m = B(#gy1 — 1, p"). One could see this distribution as (a
bound of) the likeliness of A given if m out of #S,, — 1 of the possible y; would lead
to a reject. We look at the confidence interval where at most {27128, 27192 27256} of
the distribution’s area falls outside the interval for Dilithium{2,3,5} respectively. This
gives us a lower and upper bound for the total number of y; values for “reasonable”
values of A that lead to a ry-check reject, which we will call my, and my,;. We plug this

into the expression for Pr[Y;,;; = y;,;] and obtain

1 miq 1 My

= < PrlYiy = Yiail) S Z —
#S = Mpj #S, = Mo

" y€S, " y€S,

1 miq 1 Mp

<7 o SPlY =Vl <7
#SY1 M #Sh myq

This leads to

m m,
AY:Y)S 1 (1—i>=1—i,
1, #5t1
Ytailes)gl_l "

which, for Dilithium{2,3,5}, is approximately {2_2289, 22544 2_2543}.

In wrapping up this hybrid step, we multiply this distance with the probability that
we reach iteration k + 1, which is pF. Summing over all signing-oracle queries and

taking the limit of k to infinity results in

151

8 Dilithium nonce recycling

K—00 1

i=0

qs—1 k—1 v/
ATransaIHo_’T"ans < lim (Z (pk + Z ij(Y; Y’))) — qu(Yf’Yp). (8.7)
j=0

What are “reasonable” values of A? The security argument of that we just
described is based on the idea that A should have a “reasonable” value. This means
that we assume that, for all possible y,,;|, the value of A is such that the probability
that the ry-check leads to an abort is close to the probability that the ry-check leads
to an abort if all of y was freshly sampled. Examples of bad values of A are when a
polynomial in the first column of A is equal to 0, or when many of the coefficients in
those polynomials A are close to a small factor of 2y,. Ideally, we would like to fix the
(reasonable) value of A ahead of time (i.e., during KeyGen) and then show that this
value leads to a good rejection probability for all y,,;. However, we were not able to
find a good description of the class of “reasonable” values of A, and were therefore
forced to rely on a more ad-hoc argument—expressing A in terms of y,; instead of
the other way around. Still, because the probability space of y; is so incredibly big
(with more than 4000 bits of entropy for all variants), this results in a very small (even
in cryptographic terms) statistical distance (< 27228%). As such, we expect that the

security loss of this hybrid step is minimal.

8.A.3 Performance

The proposal described in this appendix adds another performance improvement
to the Dilithium scheme; this one more substantial than the first. The combination
of both alterations, which we denote by alt, results in the largest improvement in

signing speed.

In Table 8.3, we list the updated number of primitive operations, and in Table 8.4 we
list the updated speedups for optimized implementations. In Table 8.4, we observe new
speedups ranging from 15% for Dilithium2 on Cortex-M3, up to 23% for Dilithium3
with AVX2, when using the combination of both alterations to the scheme.

152

8.A Resampling only y, after failed ry-check

(%001) 89°68 (%001) 2€°68 (%001) 09°68 (%001) 62°68 o_LIN
(%6¥) 2T'ST (%¥S) $8°91 (%L8) 68°92 (%001) 90°T€ 1IN
swniyy|ig
(6L8) L€€0T (%19 LETITIT (%68) TL 19T (%001) LF'Z8T 4Xed28y
(%2%) 2¢'11 (48%) G621 (%$8) 66'C2 (4001) 81°12 swope £
(%001) 90°L8 (101) €T°L8 (%101) €€28 (%001) L9798 o_LIN
(%05) 9¢°GT (%SS) 2,91 (%L8) 2592 (%001) 66°0€ LIN
(%259) 16'18 (%95) 2.°88 (%L8) €L LET (%00T) GO'SST 4Xed29Y
(%0%) $2°01 (%s%) 6511 (%¥8) 8¢'12 (%001) 63°S2 swop £
(%66) T9'TS (%001) L9'TS (%001) 06'TS (%001) 06'TS o_LIN
(%6S) 2L°21 (%99) QT'%1 (%¥8) GZ'8T (%001) €9°12 1IN
zwniyig
(%£9) L¥'6S (%69) €£°69 (%98) 69'18 (%001) 91°G6 4209y
(%6%) 2¥'8 (4L5) 18°6 (%08) €6°€T (%001) 0€"LT swapd £
e 01-3pe Z-]|e aureseq

'suni 000 001 a0 panduwod

31om s98RISAY *(19]39q ST Iamo[) uorjerado Yoes I10J S[[ed JO I9qUINU SAIJR[aI Y} JBIIPUI saFejuadIag “Iajdeyd sy ul
pasodoid suorjeoyipow ayj Suisn pue ‘Surugis wIyii payipowun Suisn doo] Surjdures-uonod(ox WNIYII 9Y3 Ut ;_LIN
PUR ‘LIN ‘©3nwiad23e3S~0e9T4%ed23) 0] S[[ed ‘Sjustua[o A pajdures Jo roquinu 93eIdAy :1°g 9[qe], JO UOISUIXY :¢'8 d[qel,

153

8 Dilithium nonce recycling

Table 8.4: Extension of Table 8.2. Average latencies of Dilithium signature generation
on AVX2, Cortex-M4, and Cortex-M3. Cycle counts are listed in kilocycles and
include the computation of A. Percentages report the total speedup of applying both
proposals compared to the baseline (vanilla) Dilithium. Note that these results cannot
be compared with [GKS21], because the parameters of Dilithium have been updated
for round 3 of the NIST competition (and so our baseline is an update of [GKS21,

Strategy 2]).
baseline alt-z altrg alt
AVX2 367 345 318 309 (16%)
Dilithium2 Cortex-M4 4458 4168 3810 3698 (17%)
Cortex-M3 7591 7275 6595 6472 (15%)
AVX2 564 532 445 434 (23%)
Dilithium3 Cortex-M4 7137 6889 5873 5736 (20%)
Cortex-M3 12316 12015 10177 10016 (19%)
AVX2 691 661 561 549 (20%)
Dilithium5 Cortex-M4 9447 9079 7899 7766 (18%)

Cortex-M3 -a -a -a -a

2 Not enough SRAM available to store Dilithium5 state.

154

8.B Derivation of Equation (8.1)

8.B Derivation of Equation (8.1)

Sign®—Prog?"

y2

(qf

i=0

1060

61 0,60

gsp* +Z

Kk—1
(PK + 606 — G0t Z 5i,j,e>>
j=0

gs—1 K—1
0.6, — Gi0e Z 8ije
Jj=0

106+Z51]e>
0.6+ Z (Pie(l

ip+qH+j))>

)pf+]ZOejpf>

i+p
(1-p)

i+p
€ 2

(1-p)

)

s—1
+
2(1-p)

155

9 Conclusion

Speed. In this thesis, we explored methods for polynomial multiplication that are
faster than the original method proposed for Dilithium. The first implementations
of Dilithium [GKOS18; RGCB19]—including ours ([GKS21])—followed the strategy
of the Dilithium team, using Cooley-Tukey butterflies for the forward NTT and
Gentleman—-Sande butterflies for the inverse NTT. We found that we could improve
the speed of the inverse NTT, by using Cooley-Tukey instead of Gentleman-Sande
butterflies, and adopting the technique mentioned in [ACCH*22, Appendix D].

From the start, Dilithium was designed to use polynomials modulo g = 8380417,
to enable very fast polynomial multiplications using the NTT. However, we found
that—for some polynomial multiplications in the signing algorithm—we are not bound
to the original Dilithium q. In Chapter 4, we explored the idea of using a multi-moduli
NTT to compute the 32-bit polynomial multiplications in smaller 16-bit chunks. Our
experiments did not show a significant performance increase in the general case, i.e.,
when using this method to optimize (unbounded) polynomial multiplications in Ry.
However, in Chapter 5, we found that—because of the tighter bounds—csy and csy
could be computed modulo ¢’ € {257,769}, which led to polynomial multiplications
that are 38% faster for ¢’ = 257 and 33% faster for g’ = 769, compared to q = 8380417.
Moreover, others have found speedups when applying the multi-moduli idea to the
computation of cty (using gy = 769 and g] = 3329) on Cortex-M3 [HAZD"24].

One recurring theme throughout this thesis is that we see a large part of Dilithi-
um’s computation time is spent in SHAKE. Even with the recent work of [HAZD*24],
SHAKE still takes up 59%—-84% of Dilithium’s computation time, depending on the al-
gorithm and parameter set. As such, platforms with hardware acceleration for SHAKE
have a clear advantage over platforms that don’t have any hardware acceleration for
SHAKE.

157

9 Conclusion

Recent improvements in speed. Recently it was found that 16-bit NTTs could be
improved by using Plantard reduction [Pla21] (instead of Montgomery reduction) for
the internal twiddle-factor multiplications [HZZL*22]. This improvement is also ap-
plicable to Dilithium and has been applied in [HAZD"*24]. [HAZD™24] also improved
the SHAKE implementation from the eXtended Keccak Code Package (XKCP),! and
with their improvements, they currently? hold the speed records for Dilithium on
Cortex-M3 and Cortex-M4.

Memory usage. In Chapter 6, we built a Dilithium implementation that was op-
timized for memory usage rather than for speed, as many devices only have a very
limited amount of SRAM. In this implementation, we were able to use the 16-bit NTTs
to reduce the memory usage of the cs; and csy polynomial multiplications from 2
KiB bytes to 1 KiB. We found that, in the signing algorithm, the generation of both
the matrix A as well as the vector y can be streamed for a slowdown factor of about
3.3-3.9.

Before our work, it was not clear whether Dilithium was a scheme that could
reasonably fit into 16 KiB of memory. In our memory-optimized implementation,
we were able to fit Dilithium2 and Dilithium3 in 8 KiB of SRAM, with Dilithium5
slightly above at 8.1 KiB. We even managed to reduce the memory usage of signature
verification to only 3 KiB of memory. These figures show that Dilithium is a practical
scheme for use on memory-constrained devices. In [NIST22a, Section 2.2.2], NIST

recognized our findings and used them in their decision to standardize Dilithium.

Deployment. In Chapter 7, we added support for verification with Dilithium in
the hardware security engine (HSE) of the S32G274A vehicle network processor.
The S32G274A HSE does not have hardware acceleration for SHAKE. This would
not be a problem for Dilithium verification were it not for the hashing of the boot
image. For a boot image of 128 KiB, most of the verification is spent compressing the
message, leading to a relatively slow image verification. The S32G274A provides a
mechanism to overcome this, by verifying the Dilithium signature (“initial proof of
authenticity”) when the image is installed, and constructing an optimized “reference

proof of authenticity” for use during boot. However, not all chips provide such a

'https://github.com/XKCP/XKCP
?As of February 2024.

158

https://github.com/XKCP/XKCP

mechanism. In that case, the only alternative is to pre-hash the image using a hash
for which hardware acceleration is present on the chip (e.g., SHA2), and then verify
the signature over the hash instead. When using pre-hashed Dilithium variants,
implementations must domain-separate the pre-hashed variant from other Dilithium
variants, and bind the signer’s public key to the signed image. There exists a risk
that these extra measures will be forgotten or improperly implemented, which could
lead to weaknesses in protocols. Hence, we should not overlook that the proper fix
is to add hardware acceleration for SHAKE to the chip. Unfortunately, given the
lifetime of many common chip families, it will realistically take years and maybe even
decades until we can expect SHAKE acceleration to be as mainstream as acceleration
for SHA2.

Outlook. The NIST competition has attracted the attention of many researchers to
the evaluation criteria that NIST stipulated. As such, there has been a lot of research
into the implementation of fast and small post-quantum implementations, both in
software as well as in hardware. There have also been plenty of projects dedicated
to the analysis of side-channels and fault-tolerance in Dilithium (e.g., [ABCH"23;
BVCM*23; CGTZ23; CKAM*21; EFGT16; FDK20; HLKL*21; IMSS*22; Jen24; KAA21;
MGTF19; MUTS22; RCDB23; RJHC*18]%), leading to good understanding of the weak
spots in the algorithm. Even so, there still only a handful of public side-channel
and fault protected implementations of Dilithium. I believe it would benefit the
community to focus on constructing more protected implementations, rather than
exploiting weaknesses in unprotected implementations.

Aside from side-channel protected implementations, there is more work to do
evaluating the candidates from the NIST “Additional Signatures” standardization
process [NIST23a]. Although the evaluation of the new NIST schemes is important,
I hope that we will also find time to increase our understanding of other post-quantum
authentication schemes that are more advanced than regular digital signatures, like
zero-knowledge proofs [LNP22], designated verifier signatures [BFGJ*22; HKKP22;
JS196], and (linkable) ring signatures [BKP20; LW05; RST01].

3Alongside these attacks, there is also work that attacks the NTT in other lattice schemes (like Kyber and
NTRU). Many other attacks are also applicable to the usage of the NTT in Dilithium.

159

Bibliography

[AABN02]

[AB74]

[AB75]

[ABBK*16]

[ABCG20]

Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. “From
Identification to Signatures via the Fiat-Shamir Transform: Minimizing As-
sumptions for Security and Forward-Security.” In: Advances in Cryptology —
EUROCRYPT 2002. Ed. by Lars R. Knudsen. Vol. 2332. Lecture Notes in Computer
Science. Springer, Apr. 2002, pp. 418-433. DOI: 10.1007/3-540-46035-7_28
(cit. on p. 38).

Ramesh C. Agarwal and C. Sidney Burrus. “Fast convolution using Fermat
number transforms with applications to digital filtering” In: IEEE Transactions
on Acoustics, Speech, and Signal Processing 22.2 (1974), pp. 87-97. 1ssN: 0096-
3518. DOI: 10.1109/TASSP.1974.1162555 (cit. on p. 79).

Ramesh C. Agarwal and C. Sidney Burrus. “Number theoretic transforms to
implement fast digital convolution” In: Proceedings of the IEEE 63.4 (1975),
Pp- 550-560. 1ssN: 0018-9219. DOI: 10.1109/PROC.1975.9791 (cit. on p. 79).

Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Kramer, and
Giorgia Azzurra Marson. “An Efficient Lattice-Based Signature Scheme with
Provably Secure Instantiation” In: AFRICACRYPT 16: 8th International Con-
ference on Cryptology in Africa. Ed. by David Pointcheval, Abderrahmane
Nitaj, and Tajjeeddine Rachidi. Vol. 9646. Lecture Notes in Computer Science.
Springer, Apr. 2016, pp. 44-60. DOI: 10.1007/978-3-319-31517-1_3 (cit. on
p. 96).

Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and Frangois Gérard. “Cortex-
M4 optimizations for {R M[LWE schemes” In: IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2020.3 (2020), pp. 336—-357. ISSN:
2569-2925. DOI: 10.13154/tches.v2020.73.336-357. URL: https://tches.
iacr.org/index.php/TCHES/article/view/8593/8160 (cit. on pp. 28, 55,
59, 72, 75, 76, 84).

161

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1109/TASSP.1974.1162555
https://doi.org/10.1109/PROC.1975.9791
https://doi.org/10.1007/978-3-319-31517-1_3
https://doi.org/10.13154/tches.v2020.i3.336-357
https://tches.iacr.org/index.php/TCHES/article/view/8593/8160
https://tches.iacr.org/index.php/TCHES/article/view/8593/8160

Bibliography

[ABCH"23]

[ABDK*17]

[ABDK"19]

[ACCE*20]

[ACCH*22]

[ADPS16]

162

Melissa Azouaoui, Olivier Bronchain, Gaétan Cassiers, Clément Hoffmann,
Yulia Kuzovkova, Joost Renes, Tobias Schneider, Markus Schoénauer, Francois-
Xavier Standaert, and Christine van Vredendaal. “Protecting Dilithium against
Leakage Revisited Sensitivity Analysis and Improved Implementations.” In:
IACR Transactions on Cryptographic Hardware and Embedded Systems 2023.4
(2023), pp. 58-79. 155N: 2569-2925. DOI: 10.46586/tches.v2023.74.58-79
(cit. on pp. 31, 159).

Roberto Avanzi, Joppe Bos, Lao Ducas, Eike Kiltz, Tancréde Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber. Submission to the NIST Post-Quantum Cryptography
Standardization Project [NIST16]. 2017. URL: https: //csrc.nist.gov/
Projects/post-quantum-cryptography/post-quantum-cryptography-

standardization/round-1-submissions (cit. on p. 4).

Roberto Avanzi, Joppe Bos, Lao Ducas, Eike Kiltz, Tancréde Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS—Kyber. Submission to the NIST Post-Quantum Cryptography
Standardization Project [NIST16]. 2019. URL: https: //csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions (cit. on
p- 66).

Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hiilya Evkan,
Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Niederhagen,
Cheng-Jhih Shih, Julian Wilde, and Bo-Yin Yang. “Polynomial Multiplication in
NTRU Prime: Comparison of Optimization Strategies on Cortex-M4.” In: IACR
Transactions on Cryptographic Hardware and Embedded Systems 2021.1 (2020),
pp. 217-238. 1sSN: 2569-2925. DOI: 10.46586/tches.v2021.71.217-238. URL:
https://tches.iacr.org/index.php/TCHES/article/view/8733 (cit. on
pp- 77-79).

Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang, Matthias
J. Kannwischer, and Bo-Yin Yang. “Multi-moduli NTTs for Saber on Cortex-
M3 and Cortex-M4” In: IACR Transactions on Cryptographic Hardware and
Embedded Systems 2022.1 (2022), pp. 127-151. 1SSN: 2569-2925. DOI: 10.46586/
tches.v2022.41.127-151. URL: https://tches.iacr.org/index.php/
TCHES/article/view/9292 (cit. on pp. 55, 78-80, 83, 84, 157).

Erdem Alkim, Léo Ducas, Thomas Poppelmann, and Peter Schwabe. “Post-
quantum Key Exchange - A New Hope.” In: USENIX Security 2016: 25th USENIX

https://doi.org/10.46586/tches.v2023.i4.58-79
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.46586/tches.v2021.i1.217-238
https://tches.iacr.org/index.php/TCHES/article/view/8733
https://doi.org/10.46586/tches.v2022.i1.127-151
https://doi.org/10.46586/tches.v2022.i1.127-151
https://tches.iacr.org/index.php/TCHES/article/view/9292
https://tches.iacr.org/index.php/TCHES/article/view/9292

[ADRO02]

[AELN*20]

[AFGK*14]

[AHHP*18]

[AHKS22]

[AJS16]

Bibliography

Security Symposium. Ed. by Thorsten Holz and Stefan Savage. USENIX Associ-
ation, Aug. 2016, pp. 327-343 (cit. on p. 56).

Jee Hea An, Yevgeniy Dodis, and Tal Rabin. “On the Security of Joint Signature
and Encryption.” In: Advances in Cryptology — EUROCRYPT 2002. Ed. by Lars R.
Knudsen. Vol. 2332. Lecture Notes in Computer Science. Springer, Apr. 2002,
pp. 83-107. DOI: 10.1007/3-540-46035-7_6 (cit. on p. 21).

Erdem Alkim, Hiilya Evkan, Norman Lahr, Ruben Niederhagen, and Richard
Petri. “ISA Extensions for Finite Field Arithmetic: Accelerating Kyber and
NewHope on RISC-V? In: IACR Transactions on Cryptographic Hardware and
Embedded Systems 2020.3 (2020), pp. 219-242. 1SSN: 2569-2925. DOL: 10.13154/
tches.v2020.173.219-242. URL: https://tches.iacr.org/index.php/
TCHES/article/view/8589 (cit. on p. 59).

Diego F. Aranha, Pierre-Alain Fouque, Benoit Gérard, Jean-Gabriel Kammerer,
Mehdi Tibouchi, and Jean-Christophe Zapalowicz. “GLV/GLS Decomposition,
Power Analysis, and Attacks on ECDSA Signatures with Single-Bit Nonce Bias”
In: Advances in Cryptology — ASIACRYPT 2014, Part I. Ed. by Palash Sarkar and
Tetsu Iwata. Vol. 8873. Lecture Notes in Computer Science. Springer, Dec. 2014,
Pp- 262-281. DOI: 10.1007/978-3-662-45611-8_14 (cit. on p. 125).

Martin R. Albrecht, Christian Hanser, Andrea Hoeller, Thomas Péppelmann,
Fernando Virdia, and Andreas Wallner. “Implementing RLWE-based Schemes
Using an RSA Co-Processor.” In: IACR Transactions on Cryptographic Hardware
and Embedded Systems 2019 (2018), pp. 169-208. 1ssN: 2569-2925. DOI: 10 .
13154 /tches.v2019.71.169-208. URL: https://tches.iacr.org/index.
php/TCHES/article/view/7338 (cit. on p. 97).

Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Amber
Sprenkels. “Faster Kyber and Dilithium on the Cortex-M4.” In: ACNS 22: 20th
International Conference on Applied Cryptography and Network Security. Ed. by
Giuseppe Ateniese and Daniele Venturi. Vol. 13269. Lecture Notes in Computer
Science. Springer, June 2022, pp. 853-871. DOI: 10.1007/978-3-031-09234~
3_42. URL: https://eprint.jacr.org/2022/112 (cit. on pp. 6, 82, 84, 94, 97,
105-109, 200).

Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. “A new hope on ARM
Cortex-M” In: Security, Privacy, and Advanced Cryptography Engineering: 6th
International Conference, SPACE 2016. Ed. by Claude Carlet, M. Anwar Hasan,

and Vishal Saraswat. Vol. 10076. Lecture Notes in Computer Science. Springer,

163

https://doi.org/10.1007/3-540-46035-7_6
https://doi.org/10.13154/tches.v2020.i3.219-242
https://doi.org/10.13154/tches.v2020.i3.219-242
https://tches.iacr.org/index.php/TCHES/article/view/8589
https://tches.iacr.org/index.php/TCHES/article/view/8589
https://doi.org/10.1007/978-3-662-45611-8_14
https://doi.org/10.13154/tches.v2019.i1.169-208
https://doi.org/10.13154/tches.v2019.i1.169-208
https://tches.iacr.org/index.php/TCHES/article/view/7338
https://tches.iacr.org/index.php/TCHES/article/view/7338
https://doi.org/10.1007/978-3-031-09234-3_42
https://doi.org/10.1007/978-3-031-09234-3_42
https://eprint.iacr.org/2022/112

Bibliography

[Ajt96]

[ANSI15]

[ANSSI22]

[ANTT*20]

[ARM10a]

[ARM10b]

[ARM11]

[ARM20]

[Atmel15]

[AYS15]

164

2016, Pp.- 332-349. DOIL: 10 . 1007 /978-3-319-49445-6_19. URL: https:
//eprint.iacr.org/2016/758 (cit. on p. 59).

Miklés Ajtai. “Generating Hard Instances of Lattice Problems (Extended Ab-
stract)” In: 28th Annual ACM Symposium on Theory of Computing. ACM Press,
May 1996, pp. 99-108. DOI: 10.1145/237814.237838 (cit. on pp. 4, 34).

Public Key Cryptography For The Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA). American National Standards Institute
(ANSI), X9.62-1998. Nov. 2015 (cit. on p. 121).

NSSI views on the Post-Quantum Cryptography transition. 2022. URL: https:
/ / cyber . gouv . fr /en/publications /anssi - views - post - quantum-
cryptography-transition (visited on Apr. 9, 2024) (cit. on p. 3).

Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi,
and Yuval Yarom. “LadderLeak: Breaking ECDSA with Less than One Bit of
Nonce Leakage” In: ACM CCS 2020: 27th Conference on Computer and Commu-
nications Security. Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna. ACM Press, Nov. 2020, pp. 225-242. DOI: 10.1145/3372297.3417268.
URL: https://eprint.iacr.org/2020/615 (cit. on p. 125).

ARM. Cortex-M3 Devices Generic User Guide. 2010. URL: https://developer.
arm.com/documentation/dui0552/latest (visited on May 15, 2023) (cit. on
p- 27).

ARM. Cortex-M3 Technical Reference Manual r2p0. 2010. URL: https : / /
developer.arm.com/documentation/ddi0337/latest (visited on May 15,
2023) (cit. on p. 27).

ARM. Cortex-M4 Devices Generic User Guide. 2011. URL: https://developer.
arm.com/documentation/dui0553/latest (visited on May 15, 2023) (cit. on
p- 27).

ARM. Cortex-M4 Technical Reference Manual rOp1. 2020. URL: https : / /
developer . arm. com/ documentation /100166 / 0001 (visited on May 15,
2023) (cit. on p. 27).

Atmel. SAM3X / SAM3A Series Datasheet. 2015. URL: https://www.microchip.
com/en-us/product/ATsam3x8e (visited on May 23, 2023) (cit. on p. 30).

Aydin Aysu, Bilgiday Yuce, and Patrick Schaumont. “The Future of Real-Time
Security: Latency-Optimized Lattice-Based Digital Signatures” In: ACM Trans-
actions on Embedded Computing Systems 14.3 (2015). 1ssN: 1539-9087. DoTI:
10.1145/2724714 (cit. on p. 91).

https://doi.org/10.1007/978-3-319-49445-6_19
https://eprint.iacr.org/2016/758
https://eprint.iacr.org/2016/758
https://doi.org/10.1145/237814.237838
https://cyber.gouv.fr/en/publications/anssi-views-post-quantum-cryptography-transition
https://cyber.gouv.fr/en/publications/anssi-views-post-quantum-cryptography-transition
https://cyber.gouv.fr/en/publications/anssi-views-post-quantum-cryptography-transition
https://doi.org/10.1145/3372297.3417268
https://eprint.iacr.org/2020/615
https://developer.arm.com/documentation/dui0552/latest
https://developer.arm.com/documentation/dui0552/latest
https://developer.arm.com/documentation/ddi0337/latest
https://developer.arm.com/documentation/ddi0337/latest
https://developer.arm.com/documentation/dui0553/latest
https://developer.arm.com/documentation/dui0553/latest
https://developer.arm.com/documentation/100166/0001
https://developer.arm.com/documentation/100166/0001
https://www.microchip.com/en-us/product/ATsam3x8e
https://www.microchip.com/en-us/product/ATsam3x8e
https://doi.org/10.1145/2724714

[Bar87]

[BBDD"23]

[BCLv19]

[BCP10]

[BCRR*22]

[BDFL*11]

[BDH11]

Bibliography

Paul Barrett. “Implementing the Rivest Shamir and Adleman Public Key En-
cryption Algorithm on a Standard Digital Signal Processor” In: Advances in
Cryptology — CRYPTO’86. Ed. by Andrew M. Odlyzko. Vol. 263. Lecture Notes
in Computer Science. Springer, Aug. 1987, pp. 311-323. DOI: 10.1007/3-540-
47721-7_24 (cit. on p. 23).

Manuel Barbosa, Gilles Barthe, Christian Doczkal, Jelle Don, Serge Fehr, Ben-
jamin Grégoire, Yu-Hsuan Huang, Andreas Hilsing, Yi Lee, and Xiaodi Wu.
“Fixing and Mechanizing the Security Proof of Fiat-Shamir with Aborts and
Dilithium.” In: Advances in Cryptology — CRYPTO 2023, Part V. Ed. by Helena
Handschuh and Anna Lysyanskaya. Vol. 14085. Lecture Notes in Computer Sci-
ence. Springer, Aug. 2023, pp. 358-389. DOI: 10.1007/978-3-031-38554-4_12
(cit. on pp. 9, 34, 37, 39, 40, 132-136, 138, 139).

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine
van Vredendaal. NTRU Prime. Submission to the NIST Post-Quantum Cryp-
tography Standardization Project [NIST16]. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-2-submissions. 2019
(cit. on p. 66).

Ben “bushing” Byer, Hector Martin “marcan” Cantero, and Sven Peter. Con-
sole Hacking 2010. 27th Chaos Communication Congress — 27C3, https://
fahrplan.events.ccc.de/congress/2010/Fahrplan/events /4087 .en.
html. 2010 (cit. on p. 125).

Joppe W. Bos, Brian Carlson, Joost Renes, Marius Rotaru, Amber Sprenkels, and
Geoffrey P. Waters. “Post-quantum secure boot on vehicle network processors.”
In: 20th escar Europe - The World’s Leading Automotive Cyber Security Conference
(15. - 16.11.2022). Ruhr-Universitdt Bochum, 2022, pp. 112-125. por: 10.13154/
294-9372. URL: https://eprint.jacr.org/2022/635 (cit. on pp. 8, 199).

Dan Boneh, Ozgﬁr Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaftner,
and Mark Zhandry. “Random Oracles in a Quantum World” In: Advances in
Cryptology — ASIACRYPT 2011. Ed. by Dong Hoon Lee and Xiaoyun Wang.
Vol. 7073. Lecture Notes in Computer Science. Springer, Dec. 2011, pp. 41-69.
DOI: 10.1007/978-3-642-25385-0_3 (cit. on p. 34).

Johannes A. Buchmann, Erik Dahmen, and Andreas Hiilsing. “XMSS - A Practi-
cal Forward Secure Signature Scheme Based on Minimal Security Assumptions.”
In: Post-Quantum Cryptography - 4th International Workshop, PQCrypto 2011.

165

https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/978-3-031-38554-4_12
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
https://doi.org/10.13154/294-9372
https://doi.org/10.13154/294-9372
https://eprint.iacr.org/2022/635
https://doi.org/10.1007/978-3-642-25385-0_3

Bibliography

[BDL97]

[BDLS*11]

[BDPA13]

[Ber01]

[BFGJ*22]

[BG14]

[BH19]

166

Ed. by Bo-Yin Yang. Springer, Nov. 2011, pp. 117-129. por: 10.1007/978-3~
642-25405-5_8 (cit. on p. 39).

Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the Importance of
Checking Cryptographic Protocols for Faults (Extended Abstract)” In: Advances
in Cryptology — EUROCRYPT’97. Ed. by Walter Fumy. Vol. 1233. Lecture Notes
in Computer Science. Springer, May 1997, pp. 37-51. DOI: 10.1007/3-540-
69053-0_4 (cit. on pp. 112, 119).

Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
“High-Speed High-Security Signatures.” In: CHES 2011. Ed. by Bart Preneel
and Tsuyoshi Takagi. Vol. 6917. Lecture Notes in Computer Science. Springer,
2011, pp. 124-142. DOI: 10 . 1607 /978 -3-642-23951-9_9. URL: https:
//link.myspringer.com/chapter/10.1007/978-3-642-23951-9_9 (cit. on
pp. 115, 125).

Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche. “Keccak.”
In: Advances in Cryptology — EUROCRYPT 2013. Ed. by Thomas Johansson and
Phong Q. Nguyen. Vol. 7881. Lecture Notes in Computer Science. Springer,
May 2013, pp. 313-314. DOI: 10.1007/978-3-642-38348-9_19 (cit. on p. 4).

Daniel J. Bernstein. Multidigit Multiplication For Mathematicians. 2001. URL:
https://cr.yp.to/papers/m3.pdf (cit. on p. 56).

Jacqueline Brendel, Rune Fiedler, Felix Giinther, Christian Janson, and Douglas
Stebila. “Post-quantum Asynchronous Deniable Key Exchange and the Signal
Handshake” In: PKC 2022: 25th International Conference on Theory and Practice
of Public Key Cryptography, Part II. Ed. by Goichiro Hanaoka, Junji Shikata,
and Yohei Watanabe. Vol. 13178. Lecture Notes in Computer Science. Springer,
Mar. 2022, pp. 3-34. DOI: 10.1007/978-3-030-97131-1_1 (cit. on p. 159).

Shi Bai and Steven D. Galbraith. “An Improved Compression Technique for
Signatures Based on Learning with Errors.” In: Topics in Cryptology — CT-RSA
2014. Ed. by Josh Benaloh. Springer, 2014, pp. 28—-47. DOI: 10.1007/978-3-
319-04852-9_2. URL: https://eprint.iacr.org/2013/838 (cit. on p. 34).

Joachim Breitner and Nadia Heninger. “Biased Nonce Sense: Lattice Attacks
Against Weak ECDSA Signatures in Cryptocurrencies.” In: FC 2019: 23rd In-
ternational Conference on Financial Cryptography and Data Security. Ed. by
Ian Goldberg and Tyler Moore. Vol. 11598. Lecture Notes in Computer Science.
Springer, Feb. 2019, pp. 3-20. DoI: 10.1007/978-3-030-32101-7_1 (cit. on
p. 125).

https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-642-23951-9_9
https://link.myspringer.com/chapter/10.1007/978-3-642-23951-9_9
https://link.myspringer.com/chapter/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-38348-9_19
https://cr.yp.to/papers/m3.pdf
https://doi.org/10.1007/978-3-030-97131-1_1
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-04852-9_2
https://eprint.iacr.org/2013/838
https://doi.org/10.1007/978-3-030-32101-7_1

[BHHL*15]

[BHKN"19]

[BHKY*21]

[BKNS20]

[BKP20]

[BKS19]

Bibliography

Daniel J. Bernstein, Daira Hopwood, Andreas Hiilsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe,
and Zooko Wilcox-O’Hearn. “SPHINCS: Practical Stateless Hash-Based Signa-
tures” In: Advances in Cryptology — EUROCRYPT 2015, Part I. Ed. by Elisabeth
Oswald and Marc Fischlin. Vol. 9056. Lecture Notes in Computer Science.
Springer, Apr. 2015, pp. 368-397. DOI: 10 . 1007 /978 -3-662-46800-5_15
(cit. on p. 39).

Daniel J. Bernstein, Andreas Hiilsing, Stefan Kolbl, Ruben Niederhagen, Joost
Rijneveld, and Peter Schwabe. “The SPHINCS* Signature Framework.” In: ACM
CCS 2019: 26th Conference on Computer and Communications Security. Ed. by
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz. ACM
Press, Nov. 2019, pp. 2129-2146. pOL: 10.1145/3319535.3363229 (cit. on p. 3).

Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang, and
Shang-Yi Yang. Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72
and Apple M1. Cryptology ePrint Archive, Report 2021/986. https://ia.cr/
2021/986. 2021 (cit. on pp. 78, 83).

Kevin Biirstinghaus-Steinbach, Christoph Krauf, Ruben Niederhagen, and
Michael Schneider. “Post-Quantum TLS on Embedded Systems: Integrating
and Evaluating Kyber and SPHINCS+ with mbedTLS” In: ASIACCS 20: 15th
ACM Symposium on Information, Computer and Communications Security. Ed.
by Hung-Min Sun, Shiuh-Pyng Shieh, Guofei Gu, and Giuseppe Ateniese.
ACM Press, Oct. 2020, pp. 841-852. DOI: 10 . 1145 /3320269 . 3384725. URL:
https://eprint.iacr.org/2020/308 (cit. on p. 3).

Ward Beullens, Shuichi Katsumata, and Federico Pintore. “Calamari and Falafl:
Logarithmic (Linkable) Ring Signatures from Isogenies and Lattices.” In: Ad-
vances in Cryptology — ASIACRYPT 2020, Part II. Ed. by Shiho Moriai and
Huaxiong Wang. Vol. 12492. Lecture Notes in Computer Science. Springer, Dec.
2020, pp. 464-492. DOI: 10.1007/978-3-030-64834~-3_16 (cit. on p. 159).

Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. “Memory-Efficient
High-Speed Implementation of Kyber on Cortex-M4.” In: AFRICACRYPT 19: 11th
International Conference on Cryptology in Africa. Ed. by Johannes Buchmann,
Abderrahmane Nitaj, and Tajje-eddine Rachidi. Vol. 11627. Lecture Notes in
Computer Science. Springer, July 2019, pp. 209-228. DOI: 10.1007/978-3-030~
23696-0_11. URL: https://eprint.iacr.org/2019/489.pdf (cit. on pp. 28,
59).

167

https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1145/3319535.3363229
https://ia.cr/2021/986
https://ia.cr/2021/986
https://doi.org/10.1145/3320269.3384725
https://eprint.iacr.org/2020/308
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-23696-0_11
https://doi.org/10.1007/978-3-030-23696-0_11
https://eprint.iacr.org/2019/489.pdf

Bibliography

[BKV20]

[BP02]

[BR93]

[BRS22]

[BRV22]

[BSO7]

168

Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede.
“Time-memory trade-off in Toom-Cook multiplication: an application to
module-lattice based cryptography.” In: IACR Transactions on Cryptographic
Hardware and Embedded Systems 2020.2 (2020), pp. 222-244. 1sSN: 2569-2925.
DOI: 10.13154/tches.v2020.72.222-244. URL: https://tches.iacr.org/
index.php/TCHES/article/view/8550 (cit. on pp. 28, 59).

Michael Backes and Birgit Pfitzmann. “Computational Probabilistic Non-
interference” In: ESORICS 2002: 7th European Symposium on Research in Com-
puter Security. Ed. by Dieter Gollmann, Giinter Karjoth, and Michael Waidner.
Vol. 2502. Lecture Notes in Computer Science. Springer, Oct. 2002, pp. 1-23.
DOIL: 10.1007/3-540-45853-0_1 (cit. on p. 30).

Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols” In: ACM CCS 93: 1st Conference on Computer
and Communications Security. Ed. by Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby. ACM Press, Nov. 1993, pp. 62-73.
DOI: 10.1145/168588.168596 (cit. on pp. 34, 38).

Joppe W. Bos, Joost Renes, and Amber Sprenkels. “Dilithium for Memory
Constrained Devices.” In: AFRICACRYPT 2022: 13th. Ed. by Lejla Batina and
Joan Daemen. Vol. 2022. Lecture Notes in Computer Science. Springer, July
2022, pp. 217-235. DOI: 10 . 1007 /978 -3-031-17433-9_10. URL: https:
//eprint.iacr.org/2022/323 (cit. on pp. 7, 57, 199).

Joppe W. Bos, Joost Renes, and Christine van Vredendaal. “Post-Quantum Cryp-
tography with Contemporary Co-Processors: Beyond Kronecker, Schénhage-
Strassen & Nussbaumer” In: 31st USENIX Security Symposium, USENIX Se-
curity 2022, Boston, MA, USA, August 10-12, 2022. Ed. by Kevin R. B. Butler
and Kurt Thomas. USENIX Association, 2022, pp. 3683-3697. URL: https :
//eprint.iacr.org/2020/1303 (cit. on pp. 97, 98, 109).

Daniel J. Bernstein and Jonathan P. Sorenson. “Modular exponentiation via the
explicit Chinese remainder theorem.” In: Mathematics of Computation 76.257
(2007), pp. 443-454. 1sSN: 0025-5718. DOI: 10.1090/S0025-5718-06-01849-7,
archived at https://web.archive.org/web/20221101000000* /https :
//cr.yp.to/antiforgery/meecrt-20030815.pdf on Nov. 1, 2022 (cit. on
p- 66).

https://doi.org/10.13154/tches.v2020.i2.222-244
https://tches.iacr.org/index.php/TCHES/article/view/8550
https://tches.iacr.org/index.php/TCHES/article/view/8550
https://doi.org/10.1007/3-540-45853-0_1
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-031-17433-9_10
https://eprint.iacr.org/2022/323
https://eprint.iacr.org/2022/323
https://eprint.iacr.org/2020/1303
https://eprint.iacr.org/2020/1303
https://doi.org/10.1090/S0025-5718-06-01849-7
https://web.archive.org/web/20221101000000*/https://cr.yp.to/antiforgery/meecrt-20030815.pdf
https://web.archive.org/web/20221101000000*/https://cr.yp.to/antiforgery/meecrt-20030815.pdf

[BS97]

[BSI20a]

[BSI20b]

[BUC19]

[BVCM*23]

[BvSY14]

[CCDG*23]

Bibliography

Eli Biham and Adi Shamir. “Differential Fault Analysis of Secret Key Cryp-
tosystems.” In: Advances in Cryptology — CRYPTO’97. Ed. by Burton S. Kaliski Jr.
Vol. 1294. Lecture Notes in Computer Science. Springer, Aug. 1997, pp. 513-525.
DOI: 10.1007/BFb0052259 (cit. on pp. 112, 119).

Migration to Post Quantum Cryptography. Recommendation. Federal Office
for Information Security (BSI), 2020. URL: https: //www . bsi . bund . de/
SharedDocs /Downloads/EN/BSI/Crypto/Migration_to_Post_Quantum_
Cryptography.html (visited on Jan. 23, 2024) (cit. on p. 3).

Status of quantum computer development (version 1.2). Tech. rep. Federal
Office for Information Security (BSI), 2020. URL: https : / / www . bsi .
bund . de / SharedDocs / Downloads / DE / BSI / Publikationen / Studien/
Quantencomputer /P283_QC_Studie-V_1_2.html (visited on Jan. 23, 2024)
(cit. on p. 3).

Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. “Sapphire: A
Configurable Crypto-Processor for Post-Quantum Lattice-based Protocols.” In:
IACR Transactions on Cryptographic Hardware and Embedded Systems 2019.4
(2019), pp. 17-61. 185N: 2569-2925. DOI: 10.13154/tches.v2019.94.17-61.
URL: https://tches.iacr.org/index.php/TCHES/article/view/8344
(cit. on p. 59).

Alexandre Berzati, Andersson Calle Viera, Maya Chartouny, Steven Madec,
Damien Vergnaud, and David Vigilant. “Exploiting Intermediate Value Leakage
in Dilithium: A Template-Based Approach.” In: IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2023.4 (2023), pp. 188—210. ISSN:
2569-2925. DOI: 10.46586/tches.v2023.74.188-210 (cit. on p. 159).

13

Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. ““Ooh Aah...
Just a Little Bit”: A Small Amount of Side Channel Can Go a Long Way.” In:
Cryptographic Hardware and Embedded Systems — CHES 2014. Ed. by Lejla
Batina and Matthew Robshaw. Vol. 8731. Lecture Notes in Computer Science.
Springer, Sept. 2014, pp. 75-92. DOI: 10.1007/978-3-662-44709-3_5. URL:
https://eprint.iacr.org/2014/161 (cit. on p. 125).

Jung Hee Cheon, Hyeongmin Choe, Julien Devevey, Tim Giineysu, Dongyeon
Hong, Markus Krausz, Georg Land, Marc Moller, Damien Stehlé, and MinJune
Yi. HAETAE: Shorter Lattice-Based Fiat-Shamir Signatures. Cryptology ePrint
Archive, Paper 2023/624. 2023. URL: https://eprint.iacr.org/2023/624
(cit. on p. 145).

169

https://doi.org/10.1007/BFb0052259
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_to_Post_Quantum_Cryptography.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_to_Post_Quantum_Cryptography.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_to_Post_Quantum_Cryptography.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.html
https://doi.org/10.13154/tches.v2019.i4.17-61
https://tches.iacr.org/index.php/TCHES/article/view/8344
https://doi.org/10.46586/tches.v2023.i4.188-210
https://doi.org/10.1007/978-3-662-44709-3_5
https://eprint.iacr.org/2014/161
https://eprint.iacr.org/2023/624

Bibliography

[CG19]

[CGTZ23]

[CHKS*21]

[CJLM*20]

[CKAM*21]

[CNPR*23]

170

David Challener and Kenneth Goldman. Trusted Platform Module Library
Specification, Family “2.0”, Level 00, Revision 01.59. 2019. URL: https : / /
trustedcomputinggroup.org/work-groups/trusted-platform-module/
(visited on Dec. 13, 2022) (cit. on p. 112).

Jean-Sébastien Coron, Francois Gérard, Matthias Trannoy, and Rina Zeitoun.
“Improved Gadgets for the High-Order Masking of Dilithium” In: IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2023.4 (2023), pp. 110-
145. 1SSN: 2569-2925. DOI: 10.46586/tches.v2023.74.110-145 (cit. on pp. 31,
159).

Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. “NTT Multiplication for NTT-
unfriendly Rings: New Speed Records for Saber and NTRU on Cortex-M4
and AVX2” In: IACR Transactions on Cryptographic Hardware and Embedded
Systems 2021.2 (2021), pp. 159-188. 1SSN: 2569-2925. DOI: 10 . 46586/ tches.
v2021.172.159-188. URL: https://tches.iacr.org/index.php/TCHES/
article/view/8791 (cit. on pp. 55, 77, 79, 81).

Fabio Campos, Lars Jellema, Mauk Lemmen, Lars Miiller, Amber Sprenkels, and
Benoit Viguier. “Assembly or Optimized C for Lightweight Cryptography on
RISC-V?” In: CANS 20: 19th International Conference on Cryptology and Network
Security. Ed. by Stephan Krenn, Haya Shulman, and Serge Vaudenay. Vol. 12579.
Lecture Notes in Computer Science. Springer, Dec. 2020, pp. 526—-545. DOI: 10.
1007/978-3-030-65411-5_26. URL: https://eprint.iacr.org/2020/836
(cit. on p. 200).

Zhaohui Chen, Emre Karabulut, Aydin Aysu, Yuan Ma, and Jiwu Jing. “An
Efficient Non-Profiled Side-Channel Attack on the CRYSTALS-Dilithium Post-
Quantum Signature.” In: 2021 IEEE 39th International Conference on Computer
Design (ICCD). IEEE, 2021, pp. 583—-590. DOI: 10.1109/ICCD53106.2021.00094
(cit. on p. 159).

Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Tovohery Hajatiana
Randrianarisoa, Krijn Reijnders, Simona Samardjiska, and Monika Trimoska.
“Take Your MEDS: Digital Signatures from Matrix Code Equivalence.” In:
AFRICACRYPT 23: 14th International Conference on Cryptology in Africa. Ed. by
Nadia El Mrabet, Luca De Feo, and Sylvain Duquesne. Vol. 14064. Lecture Notes
in Computer Science. Springer, July 2023, pp. 28—52. DOI: 10.1007/978-3-
031-37679-5_2. URL: https://eprint.jacr.org/2022/1559 (cit. on p. 125).

https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://doi.org/10.46586/tches.v2023.i4.110-145
https://doi.org/10.46586/tches.v2021.i2.159-188
https://doi.org/10.46586/tches.v2021.i2.159-188
https://tches.iacr.org/index.php/TCHES/article/view/8791
https://tches.iacr.org/index.php/TCHES/article/view/8791
https://doi.org/10.1007/978-3-030-65411-5_26
https://doi.org/10.1007/978-3-030-65411-5_26
https://eprint.iacr.org/2020/836
https://doi.org/10.1109/ICCD53106.2021.00094
https://doi.org/10.1007/978-3-031-37679-5_2
https://doi.org/10.1007/978-3-031-37679-5_2
https://eprint.iacr.org/2022/1559

[Co087]

[CT65]

[data24a]

[data24b]

[data24c]

[data24d]

[DFPS23]

[DH76]

[DKLL*17]

Bibliography

James W. Cooley. “The re-discovery of the fast Fourier transform algorithm.”
In: Mikrochimica Acta 93.1-6 (1987), pp. 33-45. 1ssN: 0026-3672. DOIL: 10.1007/
BF01201681 (cit. on p. 55).

James W. Cooley and John W. Tukey. “An algorithm for the machine calculation
of complex Fourier series.” In: Mathematics of Computation 19.90 (1965), pp. 297~
301. 1ssN: 0025-5718. DOI: 10.1090/S0025-5718-1965-0178586-1 (cit. on
pp. 50, 52, 75).

Amber Sprenkels. Dilithium nonce recycling experiments and benchmarks. 2024.
DOI: 10.5281/zenodo.10708819. URL: https://doi.org/10.5281/zenodo.
10708819 (cit. on p. 11).

Amber Sprenkels. Memory-optimized round-3 Dilithium in pure C. 2024. DOI:
10 .5281/zenodo . 10708284. URL: https://doi.org/10.5281/zenodo.
10708284 (cit. on p. 10).

Amber Sprenkels. Speed-optimized round-2 Dilithium on Cortex-M3 and Cortex-
M4.2024. p0O1: 10.5281/zenodo.10706370. URL: https://doi.org/10.5281/
zenodo. 10706370 (cit. on p. 10).

Amber Sprenkels. Speed-optimized round-3 Dilithium on Cortex-M4. 2024. DoI:
10 .5281/zenodo . 10707141. URL: https://doi.org/10.5281/zenodo.
10707141 (cit. on p. 10).

Julien Devevey, Pouria Fallahpour, Alain Passelégue, and Damien Stehlé. “A
Detailed Analysis of Fiat-Shamir with Aborts” In: Advances in Cryptology
— CRYPTO 2023, Part V. Ed. by Helena Handschuh and Anna Lysyanskaya.
Vol. 14085. Lecture Notes in Computer Science. Springer, Aug. 2023, pp. 327-
357. DOI: 10.1007/978-3-031-38554-4_11. URL: https://eprint.iacr.
org/2023/245 (cit. on pp. 34, 37, 132).

Whitfield Diffie and Martin E. Hellman. “New Directions in Cryptography.”
In: IEEE Transactions on Information Theory 22.6 (1976), pp. 644—654. 1SSN:
0018-9448. poI: 10.1109/TIT.1976.1055638 (cit. on pp. 2, 15).

Léo Ducas, Eike Kiltz, Tancréde Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium — Submission to round
1 of the NIST post-quantum project. 2017. URL: https://csrc.nist. gov/
Projects/post-quantum-cryptography/post-quantum-cryptography-
standardization/round-1-submissions (visited on Jan. 29, 2024) (cit. on
p-4).

171

https://doi.org/10.1007/BF01201681
https://doi.org/10.1007/BF01201681
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.5281/zenodo.10708819
https://doi.org/10.5281/zenodo.10708819
https://doi.org/10.5281/zenodo.10708819
https://doi.org/10.5281/zenodo.10708284
https://doi.org/10.5281/zenodo.10708284
https://doi.org/10.5281/zenodo.10708284
https://doi.org/10.5281/zenodo.10706370
https://doi.org/10.5281/zenodo.10706370
https://doi.org/10.5281/zenodo.10706370
https://doi.org/10.5281/zenodo.10707141
https://doi.org/10.5281/zenodo.10707141
https://doi.org/10.5281/zenodo.10707141
https://doi.org/10.1007/978-3-031-38554-4_11
https://eprint.iacr.org/2023/245
https://eprint.iacr.org/2023/245
https://doi.org/10.1109/TIT.1976.1055638
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions

Bibliography

[DKLL*18]

[DKLL*19]

[DKLL*20]

[Dur64]

[EFGT16]

[EGM96]

[FDK20]

172

Léo Ducas, Eike Kiltz, Tancréde Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. “CRYSTALS-Dilithium: A Lattice-Based
Digital Signature Scheme.” In: IACR Transactions on Cryptographic Hardware
and Embedded Systems 2018.1 (2018), pp. 238-268. 1SSN: 2569-2925. DOI: 10.
13154 /tches.v2018.171.238-268. URL: https://tches.iacr.org/index.
php/TCHES/article/view/839 (cit. on pp. 3, 4, 87, 142).

Léo Ducas, Eike Kiltz, Tancréde Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium — Submission to round
2 of the NIST post-quantum project. 2019. URL: https: //csrc.nist.gov/
Projects /post-quantum-cryptography/post-quantum-cryptography-
standardization/round-2-submissions (visited on Sept. 25, 2023) (cit. on

pp- 57, 61).

Léo Ducas, Eike Kiltz, Tancréde Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium — Submission to round
3 of the NIST post-quantum project. 2020. URL: https: //csrc.nist.gov/
Projects/post-quantum-cryptography/post-quantum-cryptography-
standardization/round-3-submissions (visited on Sept. 25, 2023) (cit. on
pp. 33, 126, 151).

Richard Durstenfeld. “Algorithm 235: Random Permutation.” In: Commun. ACM
7.7 (July 1964), p. 420. 1ssN: 0001-0782. DOI: 10.1145/364520 .364540. URL:
https://doi.org/10.1145/364520.364540 (cit. on p. 42).

Thomas Espitau, Pierre-Alain Fouque, Benoit Gérard, and Mehdi Tibouchi.
“Loop-Abort Faults on Lattice-Based Fiat-Shamir and Hash-and-Sign Signa-
tures” In: SAC 2016: 23rd Annual International Workshop on Selected Areas
in Cryptography. Ed. by Roberto Avanzi and Howard M. Heys. Vol. 10532.
Lecture Notes in Computer Science. Springer, Aug. 2016, pp. 140-158. por:
10.1007/978-3-319-69453-5_8 (cit. on p. 159).

Shimon Even, Oded Goldreich, and Silvio Micali. “On-Line/Off-Line Digital
Signatures.” In: Journal of Cryptology 9.1 (1996), pp. 35-67. 1sSN: 1432-1378.
DOI: 10.1007/BF02254791 (cit. on pp. 21, 91).

Apostolos P. Fournaris, Charis Dimopoulos, and Odysseas Koufopavlou. “Profil-
ing Dilithium Digital Signature Traces for Correlation Differential Side Channel
Attacks” In: Embedded Computer Systems: Architectures, Modeling, and Simula-
tion. Ed. by Alex Orailoglu, Matthias Jung, and Marc Reichenbach. Springer,

https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1145/364520.364540
https://doi.org/10.1145/364520.364540
https://doi.org/10.1007/978-3-319-69453-5_8
https://doi.org/10.1007/BF02254791

[Fid72]

[FK19]

[FS87]

[FVES21]

[GBOS]

[GHKK*21]

[GKOS18]

Bibliography

2020, pp. 281-294. 1sBN: 978-3-030-60939-9. DOI: 10.1007/978-3-030-60939-
9_19 (cit. on p. 159).

Charles M. Fiduccia. “Polynomial Evaluation via the Division Algorithm: The
Fast Fourier Transform Revisited” In: Proceedings of the 4th Annual ACM
Symposium on Theory of Computing. ACM, 1972, pp. 88-93. DOI: 10.1145/
800152.804900. URL: https://dl.acm.org/doi/10.1145/800152.804900
(cit. on p. 50).

Armando Faz-Hernandez and Kris Kwiatkowski. Introducing CIRCL: An
Advanced Cryptographic Library. Available at https : / / github . com /
cloudflare/circl. v1.1.0 Accessed Feb 2022. June 2019 (cit. on p. 87).

Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions to
Identification and Signature Problems.” In: Advances in Cryptology — CRYPTO’86.
Ed. by Andrew M. Odlyzko. Vol. 263. Lecture Notes in Computer Science.
Springer, Aug. 1987, pp. 186-194. DOI: 10.1007/3-540-47721-7_12 (cit. on
pp- 38, 125, 129).

Tim Fritzmann, Jonas Vith, Daniel Florez, and Johanna Sepuilveda. “Post-
quantum cryptography for automotive systems.” In: Microprocessors and Mi-
crosystems 87 (2021), p. 104379. 1ssN: 0141-9331. po1: 10.1016/j . micpro.
2021.104379 (cit. on p. 113).

Shafi Goldwasser and Mihir Bellare. Lecture Notes on Cryptography. 2008. URL:
https://cseweb.ucsd.edu/~mihir/papers/gb.pdf (cit. on p. 16).

Ruben Gonzalez, Andreas Hiilsing, Matthias J. Kannwischer, Juliane Kramer,
Tanja Lange, Marc Stottinger, Elisabeth Waitz, Thom Wiggers, and Bo-Yin
Yang. “Verifying Post-Quantum Signatures in 8 kB of RAM.” In: Post-Quantum
Cryptography. Ed. by Jung Hee Cheon and Jean-Pierre Tillich. Springer, 2021,
pp- 215-233. DOI: 16.1007/978-3-030-81293-5_12. URL: https://eprint.
iacr.org/2021/662 (cit. on p. 21).

Tim Giineysu, Markus Krausz, Tobias Oder, and Julian Speith. “Evaluation of
Lattice-Based Signature Schemes in Embedded Systems.” In: 2018 25th IEEE
International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2018,
pp. 385-388. DOI: 10.1109/ICECS.2018.8617969 (cit. on pp. 58, 61-64, 72, 73,
93, 113, 157).

173

https://doi.org/10.1007/978-3-030-60939-9_19
https://doi.org/10.1007/978-3-030-60939-9_19
https://doi.org/10.1145/800152.804900
https://doi.org/10.1145/800152.804900
https://dl.acm.org/doi/10.1145/800152.804900
https://github.com/cloudflare/circl
https://github.com/cloudflare/circl
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1016/j.micpro.2021.104379
https://doi.org/10.1016/j.micpro.2021.104379
https://cseweb.ucsd.edu/~mihir/papers/gb.pdf
https://doi.org/10.1007/978-3-030-81293-5_12
https://eprint.iacr.org/2021/662
https://eprint.iacr.org/2021/662
https://doi.org/10.1109/ICECS.2018.8617969

Bibliography

[GKS21]

[GMRS5]

[GOPS13]

[GOPT09]

[GP18]

[GPV08]

[GR19]

174

Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels. “Com-
pact Dilithium Implementations on Cortex-M3 and Cortex-M4.” In: IACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2021.1 (2021). Ar-
tifact available at https://artifacts.iacr.org/tches/2021/al, pp. 1-24.
ISSN: 2569-2925. DOIL: 10.46586/tches.v2021.71.1-24 (cit. on pp. 6, 7, 83-85,
88, 94, 105-109, 119, 131, 142-144, 154, 157, 200).

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge Com-
plexity of Interactive Proof-Systems (Extended Abstract).” In: 17th Annual ACM
Symposium on Theory of Computing. ACM Press, May 1985, pp. 291-304. por:
10.1145/22145.22178 (cit. on p. 38).

Tim Giineysu, Tobias Oder, Thomas Péppelmann, and Peter Schwabe. “Software
Speed Records for Lattice-Based Signatures.” In: Post-Quantum Cryptography -
5th International Workshop, PQCrypto 2013. Ed. by Philippe Gaborit. Springer,
June 2013, pp. 67-82. DOL: 10.1007/978-3-642-38616-9_5 (cit. on p. 62).

Johann Grof3schadl, Elisabeth Oswald, Dan Page, and Michael Tunstall. “Side-
Channel Analysis of Cryptographic Software via Early-Terminating Multi-
plications.” In: ICISC 09: 12th International Conference on Information Secu-
rity and Cryptology. Vol. 5984. Lecture Notes in Computer Science. Springer,
2009, pp. 176-192. DOI: 10 . 1007 /978 -3-642-14423 -3 _13. URL: https:
//eprint.iacr.org/2009/538.pdf (cit. on pp. 28, 58).

GlobalPlatform Technology. Root of Trust Definitions and Requirements Ver-
sion 1.1 (GP_REQ_025). 2018. URL: https: //globalplatform.org/specs-
library/root-of-trust-definitions-and-requirements-vli-1-gp-
req_025/ (visited on Dec. 13, 2022) (cit. on p. 112).

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors for hard
lattices and new cryptographic constructions.” In: 40th Annual ACM Symposium
on Theory of Computing. Ed. by Richard E. Ladner and Cynthia Dwork. ACM
Press, May 2008, pp. 197-206. DOL: 10.1145/1374376.1374407 (cit. on p. 34).

Francois Gérard and Mélissa Rossi. “An Efficient and Provable Masked Imple-
mentation of qTESLA?” In: Smart Card Research and Advanced Applications -
18th International Conference, CARDIS 2019, Prague, Czech Republic, November
11-13, 2019, Revised Selected Papers. Ed. by Sonia Belaid and Tim Giineysu.
Vol. 11833. Lecture Notes in Computer Science. Springer, 2019, pp. 74-91. por:
10.1007/978-3-030-42068-0_5. URL: https://eprint.iacr.org/2019/
606 (cit. on p. 59).

https://artifacts.iacr.org/tches/2021/a1
https://doi.org/10.46586/tches.v2021.i1.1-24
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-642-38616-9_5
https://doi.org/10.1007/978-3-642-14423-3_13
https://eprint.iacr.org/2009/538.pdf
https://eprint.iacr.org/2009/538.pdf
https://globalplatform.org/specs-library/root-of-trust-definitions-and-requirements-v1-1-gp-req_025/
https://globalplatform.org/specs-library/root-of-trust-definitions-and-requirements-v1-1-gp-req_025/
https://globalplatform.org/specs-library/root-of-trust-definitions-and-requirements-v1-1-gp-req_025/
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-030-42068-0_5
https://eprint.iacr.org/2019/606
https://eprint.iacr.org/2019/606

[Gre20]

[GRI23]

[Gro15]

[GS66]

[Har09]

[HAZD"24]

[HKKP22]

[HL23]

[HLKL*21]

Bibliography

Denisa O. C. Greconici. “Kyber on RISC-V.” MA thesis. Radboud University
Nijmegen, 2020 (cit. on p. 55).

Michele Mosca and Marco Piani. 2023 Quantum Threat Timeline Report. Tech.
rep. Global Risk Institute, 2023. URL: https://globalriskinstitute.org/
publication/2023-quantum-threat-timeline-report/ (visited on Jan. 23,
2024) (cit. on p. 3).

Wouter de Groot. “A Performance Study of X25519 on Cortex-M3 and M4.
https://pure.tue.nl/ws/portalfiles/portal/47038543. MA thesis.
Technische Universiteit Eindhoven, 2015 (cit. on p. 28).

W. M. Gentleman and G. Sande. “Fast Fourier Transforms: for fun and profit.” In:
FJCC 1966. AFIPS 1966 (Fall). ACM, 1966, pp. 563-578. DOI: 10.1145/1464291.
1464352. URL: https://dl.acm.org/doi/10.1145/ 1464291 . 1464352
(visited on Aug. 1, 2023) (cit. on pp. 54, 55, 75).

David Harvey. “Faster polynomial multiplication via multipoint Kronecker
substitution” In: Journal of Symbolic Computation 44.10 (2009), pp. 1502-1510.
I1SSN: 0747-7171. DOIL: 10.1016/j.jsc.2009.05.004 (cit. on p. 97).

Junhao Huang, Alexandre Adomnicai, Jipeng Zhang, Wangchen Dai, Yao Liu,
Ray C. C. Cheung, Cetin Kaya Kog, and Donglong Chen. “Revisiting Kec-
cak and Dilithium Implementations on ARMv7-M.” In: IACR Transactions on
Cryptographic Hardware and Embedded Systems 2024 (2 2024). to appear. ISSN:
2569-2925 (cit. on pp. 157, 158).

Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest.
“An Efficient and Generic Construction for Signal’s Handshake (X3DH): Post-
quantum, State Leakage Secure, and Deniable” In: Journal of Cryptology 35.3
(July 2022), p. 17. 1sSN: 0933-2790. DOI: 10.1007/s00145-022-09427-1 (cit. on
p. 159).

Helena Handschuh and Anna Lysyanskaya, eds. Advances in Cryptology —
CRYPTO 2023, Part V. Vol. 14085. Lecture Notes in Computer Science. Springer,
Aug. 2023.

Jaeseung Han, Taeho Lee, Jihoon Kwon, Joohee Lee, II-Ju Kim, Jihoon Cho,
Dong-Guk Han, and Bo-Yeon Sim. “Single-Trace Attack on NIST Round 3
Candidate Dilithium Using Machine Learning-Based Profiling” In: IEEE Access
9 (2021), pp. 166283-166292. 1ssN: 2169-3536. DOI: 10 .1109 /ACCESS . 2021 .
3135600 (cit. on p. 159).

175

https://globalriskinstitute.org/publication/2023-quantum-threat-timeline-report/
https://globalriskinstitute.org/publication/2023-quantum-threat-timeline-report/
https://pure.tue.nl/ws/portalfiles/portal/47038543
https://doi.org/10.1145/1464291.1464352
https://doi.org/10.1145/1464291.1464352
https://dl.acm.org/doi/10.1145/1464291.1464352
https://doi.org/10.1016/j.jsc.2009.05.004
https://doi.org/10.1007/s00145-022-09427-1
https://doi.org/10.1109/ACCESS.2021.3135600
https://doi.org/10.1109/ACCESS.2021.3135600

Bibliography

[HPSW*20]

[HRS16]

[HZZL*22]

[IBM24]

[IEC10]

[IETF18]

[IETF21]

[IETF23]

176

Julius Hermelink, Thomas Péppelmann, Marc Stéttinger, Yi Wang, and Yong
Wan. “Quantum safe authenticated key exchange protocol for automotive ap-
plication” In: 18" escar Europe : The World’s Leading Automotive Cyber Security
Conference (Konferenzveriffentlichung). Ruhr-Universitdt Bochum, 2020. por:
10.13154/294-7549 (cit. on p. 113).

Andreas Hiilsing, Joost Rijneveld, and Peter Schwabe. “ARMed SPHINCS.
In: Public-Key Cryptography — PKC 2016. Ed. by Chen-Mou Cheng, Kai-Min
Chung, Giuseppe Persiano, and Bo-Yin Yang. Springer, 2016, pp. 446—-470. DOI:
10.1007/978-3-662-49384-7_17. URL: https://eprint.iacr.org/2015
(cit. on p. 21).

Junhao Huang, Jipeng Zhang, Haosong Zhao, Zhe Liu, Ray C. C. Cheung, Cetin
Kaya Kog, and Donglong Chen. “Improved Plantard Arithmetic for Lattice-
based Cryptography.” In: IACR Transactions on Cryptographic Hardware and
Embedded Systems 2022.4 (2022), pp. 614-636. 1SSN: 2569-2925. DOI: 10.46586/
tches.v2022.74.614-636 (cit. on p. 158).

Development & Innovation Roadmap. 2024. URL: https: / /www . ibm. com/
roadmaps/quantum/ (visited on Apr. 9, 2024) (cit. on p. 3).

International Electrotechnical Commission (IEC). Functional safety of electri-
cal/electronic/programmable electronic safety-related systems. IEC 61508. 2010
(cit. on p. 114).

Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. Request
for Comments RFC 8446. Internet Engineering Task Force, 2018. URL: https:
//datatracker.ietf.org/doc/rfc8446/ (visited on Jan. 22, 2024) (cit. on
p- 2).

Ben Laurie, Adam Langley, Emilia Kasper, Eran Messeri, and Rob Stradling.
Certificate Transparency Version 2.0. Request for Comments RFC 9162. Internet
Engineering Task Force, 2021. URL: https://datatracker.ietf.org/doc/
rfco162/ (visited on Jan. 22, 2024) (cit. on p. 2).

Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad
Omara, and Katriel Cohn-Gordon. The Messaging Layer Security (MLS) Protocol.
Request for Comments RFC 9420. Internet Engineering Task Force, 2023. URL:
https://datatracker.ietf.org/doc/rfc9420/ (visited on Jan. 22, 2024)
(cit. on p. 2).

https://doi.org/10.13154/294-7549
https://doi.org/10.1007/978-3-662-49384-7_17
https://eprint.iacr.org/2015
https://doi.org/10.46586/tches.v2022.i4.614-636
https://doi.org/10.46586/tches.v2022.i4.614-636
https://www.ibm.com/roadmaps/quantum/
https://www.ibm.com/roadmaps/quantum/
https://datatracker.ietf.org/doc/rfc8446/
https://datatracker.ietf.org/doc/rfc8446/
https://datatracker.ietf.org/doc/rfc9162/
https://datatracker.ietf.org/doc/rfc9162/
https://datatracker.ietf.org/doc/rfc9420/

[IMSS*22]

[IRTF18]

[IRTF19]

[15018]

(ITU18]

[Jen24]

(JL17]

[JS196]

[KAA21]

[Kan22]

Bibliography

Saad Islam, Koksal Mus, Richa Singh, Patrick Schaumont, and Berk Sunar.
“Signature Correction Attack on Dilithium Signature Scheme.” In: 2022 IEEE 7th
European Symposium on Security and Privacy (EuroS&P). IEEE, 2022, pp. 647-
663. DOL: 10.1109/EuroSP53844.2022.00046 (cit. on p. 159).

Andreas Huelsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and Aziz
Mohaisen. XMSS: eXtended Merkle Signature Scheme. RFC 8391. May 2018. pot:
10.17487/RFC8391. URL: https://www.rfc-editor.org/info/rfc8391
(visited on Jan. 23, 2024) (cit. on p. 3).

David McGrew, Michael Curcio, and Scott Fluhrer. Leighton-Micali Hash-Based
Signatures. RFC 8554. Apr. 2019. DOI: 10.17487/RFC8554. URL: https://www.
rfc-editor.org/info/rfc8554 (visited on Jan. 23, 2024) (cit. on p. 3).

International publisher for Standardization (ISO). Road vehicles - Functional
safety. ISO 26262. 2018 (cit. on p. 114).

Client to authenticator protocol/Universal 2-factor framework. Recommendation
X.1278. International Telecommunication Union, 2018. URL: https://www.itu.
int/rec/T-REC-X.1278-201811-I/en (visited on Jan. 22, 2024) (cit. on p. 2).

Sonke Jendral. A Single Trace Fault Injection Attack on Hedged CRYSTALS-
Dilithium. Cryptology ePrint Archive, Paper 2024/238. 2024. URL: https://
eprint.jacr.org/2024/238 (cit. on p. 159).

S. Josefsson and I. Luisvaara. RFC 8032: Edwards-Curve Digital Signature Algo-
rithm (EdDSA). Internet Research Task Force (IRTF), Jan. 2017 (cit. on p. 121).

Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. “Designated Verifier
Proofs and Their Applications.” In: Advances in Cryptology — EUROCRYPT 9.
Ed. by Ueli M. Maurer. Vol. 1070. Lecture Notes in Computer Science. Springer,
May 1996, pp. 143-154. DOI: 10.1007/3-540-68339-9_13 (cit. on p. 159).

Emre Karabulut, Erdem Alkim, and Aydin Aysu. “Single-Trace Side-Channel
Attacks on w-Small Polynomial Sampling: With Applications to NTRU, NTRU
Prime, and CRYSTALS-DILITHIUM.” In: 2021 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST). IEEE, 2021, pp. 35-45. por:
10.1109/H0ST49136.2021.9702284 (cit. on p. 159).

Matthias J. Kannwischer. “Polynomial Multiplication for Post-Quantum Cryp-
tograpy.” PhD thesis. Radboud University, 2022. URL: https://hdl.handle.
net/2066/247905 (cit. on pp. 55, 56).

177

https://doi.org/10.1109/EuroSP53844.2022.00046
https://doi.org/10.17487/RFC8391
https://www.rfc-editor.org/info/rfc8391
https://doi.org/10.17487/RFC8554
https://www.rfc-editor.org/info/rfc8554
https://www.rfc-editor.org/info/rfc8554
https://www.itu.int/rec/T-REC-X.1278-201811-I/en
https://www.itu.int/rec/T-REC-X.1278-201811-I/en
https://eprint.iacr.org/2024/238
https://eprint.iacr.org/2024/238
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1109/HOST49136.2021.9702284
https://hdl.handle.net/2066/247905
https://hdl.handle.net/2066/247905

Bibliography

[KBSV18]

[KGCK*20]

(KJJ99]

[KL20]

[KLS18]

[Knuo2]

[Kob87]

[Koc96]

178

Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy, and In-
grid Verbauwhede. “Saber on ARM: CCA-secure module lattice-based key
encapsulation on ARM?” In: IACR Transactions on Cryptographic Hardware and
Embedded Systems 2018.3 (2018), pp. 243-266. 1SSN: 2569-2925. DOIL: 10.13154/
tches.v2018.173.243-266. URL: https://tches.iacr.org/index.php/
TCHES/article/view/7275 (cit. on pp. 28, 59).

Vinay BY Kumar, Naina Gupta, Anupam Chattopadhyay, Michael Kasper,
Christoph Krauf, and Ruben Niederhagen. “Post-quantum secure boot.” In:
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2020,
pp. 1582-1585. DOI: 10.23919/DATE48585.2020.9116252 (cit. on p. 113).

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis.
In: Advances in Cryptology — CRYPTO’99. Ed. by Michael J. Wiener. Vol. 1666.
Lecture Notes in Computer Science. Springer, Aug. 1999, pp. 388-397. por:
10.1007/3-540-48405-1_25 (cit. on p. 119).

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. 3rd
edition. Chapman and Hall/CRC., 2020. 1SBN: 978-1-35113-303-6. DOI: 10.1201/
9781351133036 (cit. on p. 16).

Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. “A Concrete Treat-
ment of Fiat-Shamir Signatures in the Quantum Random-Oracle Model” In:
EUROCRYPT 2018. Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10822.
Lecture Notes in Computer Science. Springer, 2018, pp. 552-586. DOI: 10.1007/
978-3-319-78372-7_18. URL: https://eprint.iacr.org/2017/916 (cit. on
pp- 34, 127, 128, 130, 132, 138, 139).

Lars R. Knudsen, ed. Advances in Cryptology — EUROCRYPT 2002. Vol. 2332.
Lecture Notes in Computer Science. Springer, Apr. 2002.

Neal Koblitz. “Elliptic curve cryptosystems.” In: Mathematics of Computation
48.177 (1987), pp. 203-209. 1ssN: 1088-6842. DOI: 10.1090/S0025-5718-1987~
0866109-5 (cit. on pp. 2, 16, 112).

Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”” In: Advances in Cryptology — CRYPTO’%. Ed. by Neal
Koblitz. Vol. 1109. Lecture Notes in Computer Science. Springer, Aug. 1996,
pp. 104-113. pOI: 10.1007/3-540-68697-5_9 (cit. on p. 30).

https://doi.org/10.13154/tches.v2018.i3.243-266
https://doi.org/10.13154/tches.v2018.i3.243-266
https://tches.iacr.org/index.php/TCHES/article/view/7275
https://tches.iacr.org/index.php/TCHES/article/view/7275
https://doi.org/10.23919/DATE48585.2020.9116252
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1201/9781351133036
https://doi.org/10.1201/9781351133036
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-319-78372-7_18
https://eprint.iacr.org/2017/916
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1007/3-540-68697-5_9

[KPCS20]

[Kro82]

[KRS19]

[KRSS19]

[KSSW22]

[LDKL*19]

[LDKL*20]

Bibliography

Panos Kampanakis, Peter Panburana, Michael Curcio, and Chirag Shroff. “Post-
Quantum Hash-Based Signatures for Secure Boot.” In: Silicon Valley Cybersecu-
rity Conference. Springer, 2020, pp. 71-86. DOI: 10.1007/978-3-030-72725-3
(cit. on p. 113).

L. Kronecker. “Grundziige einer arithmetischen Theorie der algebraischen
Grossen” In: Band 92. Ed. by A. L. Crelle, C. W. Borchardt, and Schell-
bach. De Gruyter, 1882, pp. 1-122. 1SBN: 978-3-1123-4240-4. DOI: 10. 1515/
9783112342404-001 (cit. on p. 97).

Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. “Faster multipli-
cation in Z,»[x] on Cortex-M4 to speed up NIST PQC candidates.” In: ACNS 19:
17th International Conference on Applied Cryptography and Network Security.
Ed. by Robert H. Deng, Valérie Gauthier-Umaiia, Martin Ochoa, and Moti Yung.
Vol. 11464. Lecture Notes in Computer Science. Springer, 2019, pp. 281-301.
DOI: 10.1007/978-3-030-21568-2_14. URL: https://eprint.iacr.org/
2018/1018.pdf (cit. on pp. 28, 59).

Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4. Cryptology
ePrint Archive, Report 2019/844. https://eprint.iacr.org/2019/844. 2019
(cit. on p. 87).

Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom Wiggers.
“Improving Software Quality in Cryptography Standardization Projects.” In:
ieee European Symposium on Security and Privacy, EuroS&P 2022 - Workshops,
Genoa, Italy, June 6-10, 2022. Los Alamitos, CA, USA: IEEE Computer Society,
2022, pp. 19-30. DOI: 10 . 1109 / EuroSPW55150 . 2022 . 00010. URL: https:
//eprint.iacr.org/2022/337 (cit. on pp. 105, 107).

Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancréde Lepoint, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-DILITHIUM. Tech. rep. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-2-submissions.
National Institute of Standards and Technology, 2019 (cit. on p. 65).

Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancréde Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Tech.
rep. available at https: //csrc.nist. gov/projects/post-quantum-

cryptography /post-quantum-cryptography-standardization/round-

179

https://doi.org/10.1007/978-3-030-72725-3
https://doi.org/10.1515/9783112342404-001
https://doi.org/10.1515/9783112342404-001
https://doi.org/10.1007/978-3-030-21568-2_14
https://eprint.iacr.org/2018/1018.pdf
https://eprint.iacr.org/2018/1018.pdf
https://eprint.iacr.org/2019/844
https://doi.org/10.1109/EuroSPW55150.2022.00010
https://eprint.iacr.org/2022/337
https://eprint.iacr.org/2022/337
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

Bibliography

[LDKL"22]

[LMPROS]

[LN16]

[LNP22]

[LNS20]

[LOKV20]

[LS15]

180

3-submissions. National Institute of Standards and Technology, 2020 (cit. on
pp- 40, 119).

Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancréde Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Tech.
rep. available at https: //csrc.nist. gov/Projects/post-quantum-
cryptography/selected-algorithms-2022. National Institute of Standards
and Technology, 2022 (cit. on p. 45).

Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen.
“SWIFFT: A Modest Proposal for FFT Hashing” In: Fast Software Encryption.
Ed. by Kaisa Nyberg. Springer, 2008, pp. 54-72. 1SBN: 978-3-540-71039-4. DOTI:
10.1007/978-3-540-71039-4_4 (cit. on p. 78).

Patrick Longa and Michael Naehrig. “Speeding up the Number Theoretic Trans-
form for Faster Ideal Lattice-Based Cryptography.” In: CANS 2016: Cryptology
and Network Security. Ed. by Sara Foresti and Giuseppe Persiano. Vol. 10052.
Springer, 2016, pp. 124-139. pOI: 10 .1007 /978-3-319-48965-0 _8. URL:
https://eprint.iacr.org/2016 (cit. on p. 56).

Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plancon. “Lattice-
Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More
General” In: Advances in Cryptology — CRYPTO 2022, Part II. Ed. by Yevgeniy
Dodis and Thomas Shrimpton. Vol. 13508. Lecture Notes in Computer Science.
Springer, Aug. 2022, pp. 71-101. DOI: 10.1007/978-3-031-15979-4_3 (cit. on
p- 159).

Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. “Practical
Lattice-Based Zero-Knowledge Proofs for Integer Relations” In: ACM CCS
2020: 27th Conference on Computer and Communications Security. Ed. by Jay
Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna. ACM Press, Nov.
2020, pp. 1051-1070. DOI: 10.1145/3372297.3417894 (cit. on p. 146).

Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, eds. ACM CCS
2020: 27th Conference on Computer and Communications Security. ACM Press,
Nov. 2020.

Adeline Langlois and Damien Stehlé. “Worst-case to average-case reductions
for module lattices” In: Designs, Codes and Cryptography 75.3 (2015), pp. 565-
599. 1sSN: 0925-1022. DOI: 10. 1007 /s10623-014-9938-4. URL: https://
eprint.iacr.org/2012/090 (visited on June 6, 2023) (cit. on p. 34).

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-540-71039-4_4
https://doi.org/10.1007/978-3-319-48965-0_8
https://eprint.iacr.org/2016
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1145/3372297.3417894
https://doi.org/10.1007/s10623-014-9938-4
https://eprint.iacr.org/2012/090
https://eprint.iacr.org/2012/090

[LW05]

[Lyu09]

[Lyu12]

[MF21]

[MGTF19]

[Mil86]

[Mon85]

Bibliography

Joseph K. Liu and Duncan S. Wong. “Linkable Ring Signatures: Security Models
and New Schemes.” In: Computational Science and Its Applications — ICCSA 2005.
Ed. by Osvaldo Gervasi, Marina L. Gavrilova, Vipin Kumar, Antonio Lagana,
Heow Pueh Lee, Youngsong Mun, David Taniar, and Chih Jeng Kenneth Tan.
Springer, 2005, pp. 614-623. DOI: 10.1007/11424826_65 (cit. on p. 159).

Vadim Lyubashevsky. “Fiat-Shamir with Aborts: Applications to Lattice and
Factoring-Based Signatures.” In: Advances in Cryptology — ASIACRYPT 2009.
Ed. by Mitsuru Matsui. Vol. 5912. Lecture Notes in Computer Science. Springer,
Dec. 2009, pp. 598-616. DOI: 10.1007/978-3-642-10366-7_35. URL: https:
//www.iacr.org/archive/asiacrypt2009/59120596/59120596 . pdf (cit.
on pp. 34, 38, 125).

Vadim Lyubashevsky. “Lattice Signatures without Trapdoors.” In: Advances
in Cryptology — EUROCRYPT 2012. Ed. by David Pointcheval and Thomas
Johansson. Vol. 7237. Lecture Notes in Computer Science. Springer, Apr. 2012,
pp- 738-755. DOI: 10.1007/978-3-642-29011-4_43 (cit. on pp. 34, 146).

Arno Mittelbach and Marc Fischlin. The Theory of Hash Functions and Random
Oracles. Ed. by David Basin and Kenny Paterson. Springer, 2021. 1sSBN: 978-3-
030-63286-1. DOI: 10.1007/978-3-030-63287-8 (cit. on p. 16).

Vincent Migliore, Benoit Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
“Masking Dilithium - Efficient Implementation and Side-Channel Evaluation.”
In: ACNS 19: 17th International Conference on Applied Cryptography and Network
Security. Ed. by Robert H. Deng, Valérie Gauthier-Umaria, Martin Ochoa, and
Moti Yung. Vol. 11464. Lecture Notes in Computer Science. Springer, June
2019, pp. 344-362. pOI: 10 .1007 /978-3-030-21568-2_17. URL: https:
//eprint.iacr.org/2019/394 (cit. on pp. 31, 58, 64, 73, 159).

Victor S. Miller. “Use of Elliptic Curves in Cryptography.” In: Advances in
Cryptology — CRYPTO. Ed. by Hugh C. Williams. Vol. 218. Springer, 1986,
pp. 417-426. 1SBN: 978-3-540-39799-1. DOI: 10 . 1007 /3-540-39799-X_31
(cit. on pp. 2, 16, 112).

Peter L. Montgomery. “Modular multiplication without trial division.” In: Math-
ematics of Computation 44.170 (1985), pp. 519-521. 1SsN: 0025-5718. DOI: 10.
1090 /S0025-5718-1985-0777282-X. URL: https://www.ams.org/mcom/
1985-44-170 /S0025-5718-1985-0777282-X/ (visited on Feb. 14, 2023)
(cit. on pp. 23, 25, 61).

181

https://doi.org/10.1007/11424826_65
https://doi.org/10.1007/978-3-642-10366-7_35
https://www.iacr.org/archive/asiacrypt2009/59120596/59120596.pdf
https://www.iacr.org/archive/asiacrypt2009/59120596/59120596.pdf
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-030-63287-8
https://doi.org/10.1007/978-3-030-21568-2_17
https://eprint.iacr.org/2019/394
https://eprint.iacr.org/2019/394
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://www.ams.org/mcom/1985-44-170/S0025-5718-1985-0777282-X/
https://www.ams.org/mcom/1985-44-170/S0025-5718-1985-0777282-X/

Bibliography

[MTKS*20]

[MUTS22]

[NIST13]

[NIST15a]

[NIST15b]

[NIST16]

[NIST18]

[NIST19a]

182

Jose Maria Bermudo Mera, Furkan Turan, Angshuman Karmakar, Sujoy Sinha
Roy, and Ingrid Verbauwhede. “Compact domain-specific co-processor for accel-
erating module lattice-based KEM.” In: 2020 57th ACM/IEEE Design Automation
Conference (DAC).IEEE, 2020, pp. 1-6. DOI: 10.1109/DAC18072.2020.9218727
(cit. on p. 59).

Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre Seifert.
Profiling Side-Channel Attacks on Dilithium: A Small Bit-Fiddling Leak Breaks
It All. Cryptology ePrint Archive, Report 2022/106. https://eprint.iacr.
org/2022/106. 2022 (cit. on p. 159).

FIPS186-4: Digital Signature Standard (DSS). Tech. rep. National Institute of
Standards and Technology (NIST), 2013. po1: 10.6028 /NIST.FIPS.186-4.
URL: https://doi.org/10.6028/NIST.FIPS.186-4 (visited on Jan. 23, 2024)
(cit. on p. 3).

Morris Dworkin. SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions. 2015. DOI: https://doi.org/10.6028/NIST.FIPS.202
(cit. on p. 4).

Secure Hash Standard. National Institute of Standards and Technology, NIST
FIPS PUB 180-4, U.S. Department of Commerce. Aug. 2015 (cit. on p. 121).

National Institute of Standards and Technology. Post-Quantum Cryptogra-
phy — Post-Quantum Cryptography Standardization. 2016. URL: https : / /
csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-
Cryptography-Standardization (visited on Sept. 18, 2023) (cit. on pp. 3, 44,
162, 165, 184).

Elaine Barker, Lily Chen, Allen Roginsky, Apostol Vassilev, and Richard Davis.
NIST SP 800-56A Rev. 3: Recommendation for Pair-Wise Key-Establishment
Schemes Using Discrete Logarithm Cryptography. Tech. rep. National Institute of
Standards and Technology (NIST), 2018. DOI: 10.6028/NIST.SP.800-56Ar3.
URL: https://doi.org/10.6028/NIST.SP.800-56Ar3 (visited on Jan. 23,
2024) (cit. on p. 3).

Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh
Dang, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson,
Daniel Smith-Tone, and Yi-Kai Liu. Status Report on the First Round of the NIST
Post-Quantum Cryptography Standardization Process. NIST IR 8240. National
Institute of Standards and Technology, 2019. poI: 10.6028 /NIST.IR.8240.

https://doi.org/10.1109/DAC18072.2020.9218727
https://eprint.iacr.org/2022/106
https://eprint.iacr.org/2022/106
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.IR.8240

[NIST19b]

[NIST20a]

[NIST20b]

[NIST22a]

[NIST22b]

[NIST23a]

[NIST23b]

Bibliography

URL: https://csrc.nist.gov/pubs/ir/8240/final (visited on Jan. 25,
2024) (cit. on p. 3).

Elaine Barker, Lily Chen, Allen Roginsky, Apostol Vassilev, Richard Davis,
and Scott Simon. NIST SP 800-56B Rev. 2: Recommendation for Pair-Wise Key-
Establishment Using Integer Factorization Cryptography. Tech. rep. National
Institute of Standards and Technology (NIST), 2019. poI: 10.6028/NIST.SP.
800-56Br2. URL: https://doi.org/10.6028/NIST.SP.800-56Br2 (visited
on Jan. 23, 2024) (cit. on p. 3).

Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang,
John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, and Daniel Smith-Tone. Status Report on the Second Round of
the NIST Post-Quantum Cryptography Standardization Process. NIST IR 8309.
National Institute of Standards and Technology, 2020. po1: 10 .6028 /NIST.
IR.8309. URL: https://csrc.nist.gov/pubs/ir/8309/final (visited on
Jan. 25, 2024) (cit. on p. 3).

David Cooper, Daniel Apon, Quynh Dang, Michael Davidson, Morris Dworkin,
and Carl Miller. Recommendation for Stateful Hash-Based Signature Schemes. SP
800-208. National Institute of Standards and Technology, 2020 (cit. on p. 113).

Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John
Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, Daniel Smith-Tone, and Yi-Kai Liu. Status Report on the Third
Round of the NIST Post-Quantum Cryptography Standardization Process. NIST IR
8314. National Institute of Standards and Technology, 2022. Do1: 10.6028 /NIST.
IR.8413-updl. URL: https://csrc.nist.gov/pubs/ir/8413/updl/final
(visited on Jan. 25, 2024) (cit. on pp. 3, 158).

National Institute of Standards and Technology. Post-Quantum Cryptography:
Digital Signature Schemes. 2022. URL: https://csrc.nist.gov/Projects/
pgc-dig-sig/standardization (visited on Dec. 18, 2023) (cit. on p. 145).

Call for Additional Digital Signature Schemes for the Post-Quantum Cryptography
Standardization Process. 2023. URL: https://csrc.nist.gov/projects/pqc-
dig-sig/standardization/call-for-proposals (visited on Jan. 25, 2024)
(cit. on pp. 3, 159).

Lily Chen, Dustin Moody, Andrew Regenscheid, and Angela Robinson. FIPS
186-5: Digital Signature Standard (DSS). 2023. pOI: https://doi.org/10.

183

https://csrc.nist.gov/pubs/ir/8240/final
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.6028/NIST.IR.8309
https://csrc.nist.gov/pubs/ir/8309/final
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://csrc.nist.gov/pubs/ir/8413/upd1/final
https://csrc.nist.gov/Projects/pqc-dig-sig/standardization
https://csrc.nist.gov/Projects/pqc-dig-sig/standardization
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://doi.org/https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/https://doi.org/10.6028/NIST.FIPS.186-5

Bibliography

[NSA22]

[Nus81]

[0d187]

[PAAB*19]

[PFHK"22]

[PKCS198]

[Pla21]

[Pol71]

184

6028 /NIST.FIPS.186-5. URL: https://tsapps.nist.gov/publication/
get_pdf.cfm?pub_id=935202 (visited on Feb. 27, 2024) (cit. on p. 115).

Announcing the Commercial National Security Algorithm Suite 2.0. Cybersecu-
rity Advisory. National Security Agency (NSA), 2022. URL: https://media.
defense . gov /2022 /Sep /07 /2003071834/-1/-1/0/CSA_CNSA_2.0_
ALGORITHMS_.PDF (visited on Jan. 23, 2024) (cit. on p. 3).

Henri J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Ed. by
King Sun Fu, Thomas S. Huang, and Manfred R. Schroeder. Vol. 2. mySpringer
Series in Information Sciences. Springer, 1981. 1SBN: 978-3-662-00553-8. DOTI:
10.1007/978-3-662-00551-4. URL: http://link.myspringer.com/10.
1007/978-3-662-00551-4 (visited on Aug. 28, 2023) (cit. on p. 56).

Andrew M. Odlyzko, ed. Advances in Cryptology — CRYPTO’86. Vol. 263. Lecture
Notes in Computer Science. Springer, Aug. 1987.

Thomas Péppelmann, Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas,
Antonio de la Piedra, Peter Schwabe, Douglas Stebila, Martin R. Albrecht,
Emmanuela Orsini, Valery Osheter, Kenneth G. Paterson, Guy Peer, and Nigel
P. Smart. NewHope. Submission to the NIST Post-Quantum Cryptography
Standardization Project [NIST16]. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions. 2019 (cit.
on p. 66).

Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte,
and Zhenfei Zhang. FALCON. Tech. rep. available at https://csrc.nist.gov/
Projects / post - quantum-cryptography / selected - algorithms - 2022.
National Institute of Standards and Technology, 2022 (cit. on pp. 3, 77).

PKCS #1: RSA Cryptography Standard. RSA Data Security, Inc. Version 2.0.
1998, archived at https://web.archive.org/web/20160410165357 /http:
/ /www . emc.com/collateral/white-papers/hl11300-pkcs-1v2-2-rsa-
cryptography-standard-wp.pdf on Apr. 10, 2016 (cit. on p. 115).

Thomas Plantard. “Efficient Word Size Modular Arithmetic” In: IEEE Transac-
tions on Emerging Topics in Computing 9.3 (2021), pp. 1506—1518. 1SsN: 2168-6750.
DOI: 10.1109/TETC.2021.3073475 (cit. on pp. 15, 158).

J. M. Pollard. “The fast Fourier transform in a finite field.” In: Mathematics of
Computation 25.114 (1971), pp. 365-374. 1SsN: 0025-5718. DOI: 10.1090/S0025-
5718-1971-0301966-0 (cit. on p. 50).

https://doi.org/https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/https://doi.org/10.6028/NIST.FIPS.186-5
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=935202
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=935202
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://doi.org/10.1007/978-3-662-00551-4
http://link.myspringer.com/10.1007/978-3-662-00551-4
http://link.myspringer.com/10.1007/978-3-662-00551-4
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://web.archive.org/web/20160410165357/http://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://web.archive.org/web/20160410165357/http://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://web.archive.org/web/20160410165357/http://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://doi.org/10.1109/TETC.2021.3073475
https://doi.org/10.1090/S0025-5718-1971-0301966-0
https://doi.org/10.1090/S0025-5718-1971-0301966-0

[Por19]

[PPRS23]

[PQM4]

[PS00]

[RCDB23]

[Reg05]

[RGCB19]

[Rij19]

Bibliography

Thomas Pornin. New Efficient, Constant-Time Implementations of Falcon. Cryp-
tology ePrint Archive, Report 2019/893. 2019. URL: https://eprint.iacr.
org/2019/893 (cit. on p. 59).

Rafaél del Pino, Thomas Prest, Mélissa Rossi, and Markku-Juhani O. Saarinen.
“High-Order Masking of Lattice Signatures in Quasilinear Time.” In: 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 2023, pp. 1168-1185. DOI: 10.
1109/SP46215.2023.10179342 (cit. on p. 31).

Matthias J. Kannwischer, Richard Petri, Joost Rijneveld, Peter Schwabe, and
Ko Stoffelen. PQOM4: Post-quantum crypto library for the ARM Cortex-M4. URL:
https://github.com/mupq/pqm4 (visited on May 30, 2023) (cit. on pp. 29, 31,
71, 78, 83, 85, 87, 88, 105, 119).

David Pointcheval and Jacques Stern. “Security Arguments for Digital Signa-
tures and Blind Signatures.” In: Journal of Cryptology 13.3 (June 2000), pp. 361-
396. 1sSN: 0933-2790. DOI: 10.1007/s001450010003 (cit. on p. 38).

Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anub-
hab Baksi. “Side-channel and Fault-injection attacks over Lattice-based Post-
quantum Schemes (Kyber, Dilithium): Survey and New Results” In: ACM Trans.
Embed. Comput. Syst. (2023). 1SsN: 1539-9087. DOI: 10 . 1145 /3603170. URL:
https://eprint.iacr.org/2022/737 (cit. on p. 159).

Oded Regev. “On lattices, learning with errors, random linear codes, and cryp-
tography”” In: 37th Annual ACM Symposium on Theory of Computing. Ed. by
Harold N. Gabow and Ronald Fagin. ACM Press, May 2005, pp. 84-93. Dor:
10.1145/1060590.1060603 (cit. on pp. 4, 33).

Prasanna Ravi, Sourav Sen Gupta, Anupam Chattopadhyay, and Shivam Bhasin.
“Improving Speed of Dilithium’s Signing Procedure.” In: Smart Card Research
and Advanced Applications - 18th International Conference, CARDIS 2019, Prague,
Czech Republic, November 11-13, 2019, Revised Selected Papers. Ed. by Sonia
Belaid and Tim Giineysu. Vol. 11833. Lecture Notes in Computer Science.
Springer, 2019, pp. 57-73. DOL: 10 . 1007 / 978 - 3 - 930 - 42068 - 0 _ 4. URL:
https://eprint.jacr.org/2019/420.pdf (cit. on pp. 58, 61, 72, 73, 87,
91-93, 109, 113, 144, 157).

Joost Rijneveld. “Practical Post-Quantum Cryptography” PhD thesis. Radboud
University, 2019. 1SBN: 978-9-463-32568-4. URL: https://hdl.handle.net/
2066/208551 (cit. on p. 13).

185

https://eprint.iacr.org/2019/893
https://eprint.iacr.org/2019/893
https://doi.org/10.1109/SP46215.2023.10179342
https://doi.org/10.1109/SP46215.2023.10179342
https://github.com/mupq/pqm4
https://doi.org/10.1007/s001450010003
https://doi.org/10.1145/3603170
https://eprint.iacr.org/2022/737
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-030-42068-0_4
https://eprint.iacr.org/2019/420.pdf
https://hdl.handle.net/2066/208551
https://hdl.handle.net/2066/208551

Bibliography

[RJHC*18]

[RSA78]

[RSTO1]

[SABD*22]

[Sch90]

[SECG00]

[Sei18]

[Sho94]

[Sin00]

186

Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopad-
hyay, and Shivam Bhasin. Side-channel Assisted Existential Forgery Attack on
Dilithium - A NIST PQC candidate. Cryptology ePrint Archive, Report 2018/821.
https://eprint.iacr.org/2018/821. 2018 (cit. on p. 159).

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems.” In: Communications
of the ACM 21.2 (1978), pp. 120—126. 1ssN: 0001-0782. DOI: 10.1145/359340.
359342 (cit. on pp. 2, 16, 112, 115).

Ronald L. Rivest, Adi Shamir, and Yael Tauman. “How to Leak a Secret.” In:
Advances in Cryptology — ASIACRYPT 2001. Ed. by Colin Boyd. Vol. 2248. Lecture
Notes in Computer Science. Springer, Dec. 2001, pp. 552-565. DOI: 10.1007/3~
540-45682-1_32 (cit. on p. 159).

Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede Lep-
oint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and
Jintai Ding. CRYSTALS-KYBER. Tech. rep. available at https://csrc.nist.
gov / Projects / post - quantum - cryptography / selected - algorithms -
2022. National Institute of Standards and Technology, 2022 (cit. on p. 77).

Claus-Peter Schnorr. “Efficient Identification and Signatures for Smart Cards”
In: Advances in Cryptology — CRYPTO’89. Ed. by Gilles Brassard. Vol. 435.
Lecture Notes in Computer Science. Springer, Aug. 1990, pp. 239-252. por:
10.1007/0-387-34805-0_22 (cit. on p. 125).

Certicom Research, Standards for Efficient Cryptography Group (SECG) — SEC 1:
Elliptic Curve Cryptography. Version 1.0. 2000. URL: http://www.secg.org/
secg_docs.htm (cit. on p. 115).

Gregor Seiler. Faster AVX2 optimized NTT multiplication for Ring-LWE lattice
cryptography. Cryptology ePrint Archive, Report 2018/039. https://eprint.
iacr.org/2018/039. 2018 (cit. on pp. 25, 56, 61, 80).

Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms
and Factoring” In: 35th Annual Symposium on Foundations of Computer Science.
IEEE Computer Society Press, Nov. 1994, pp. 124-134. po1: 10.1109/SFCS.
1994.365700 (cit. on pp. 2, 112).

Simon Singh. The code book: the science of secrecy from ancient Egypt to quantum
cryptography. 1st edition. Anchor Books, 2000. 1sBN: 978-1-85702-879-9 (cit. on

p- 1.

https://eprint.iacr.org/2018/821
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-45682-1_32
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/0-387-34805-0_22
http://www.secg.org/secg_docs.htm
http://www.secg.org/secg_docs.htm
https://eprint.iacr.org/2018/039
https://eprint.iacr.org/2018/039
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700

[SKSB20]

[Sol11]

[SS19]

[5571]

[STM20a]

[STM20b]

[SW21]

[UEFI22]

Bibliography

Steffen Sanwald, Liron Kaneti, Marc Stéttinger, and Martin Béhner. “Secure boot
revisited: challenges for secure implementations in the automotive domain.”
In: SAE International Journal of Transportation Cybersecurity and Privacy 2.11-
02-02-0008 (2020), pp. 69—81. 1SSN: 2572-1046. DOI: 10.4271/11-02-02-0008
(cit. on p. 113).

Jerome A. Solinas. “Generalized Mersenne Prime.” In: Encyclopedia of Cryptogra-
phy and Security. Ed. by Henk C. A. van Tilborg and Sushil Jajodia. Boston, MA:
mySpringer US, 2011, pp. 509-510. ISBN: 978-1-4419-5906-5. DOI: 10.1007/978-
1-4419-5906-5_32. URL: https://doi.org/10.1007/978-1-4419-5906—
5_32 (cit. on p. 23).

Peter Schwabe and Amber Sprenkels. “The Complete Cost of Cofactor h = 1
In: Progress in Cryptology - INDOCRYPT 2019: 20th International Conference in
Cryptology in India. Ed. by Feng Hao, Sushmita Ruj, and Sourav Sen Gupta.
Vol. 11898. Lecture Notes in Computer Science. Springer, Dec. 2019, pp. 375—
397. DOI: 10.1007/978-3-030-35423-7_19. URL: https://eprint.diacr.
org/2019/1166 (cit. on p. 200).

Arnold Schénhage and Volker Strassen. “Schnelle Multiplikation grofer
Zahlen” In: Computing 7.3-4 (1971), pp. 281-292. 1ssN: 0010-485X. DOI: 10 .
1007/BF02242355 (cit. on p. 79).

STMicroelectronics. STM32F407VG. 2020. URL: https : / / www . st . com /
en/microcontrollers-microprocessors/stm32f407vg . html (visited on
May 22, 2023) (cit. on p. 29).

STMicroelectronics. STM32F4DISCOVERY. 2020. URL: https://www.st.com/
en/evaluation-tools/stm32f4discovery.html (visited on May 22, 2023)
(cit. on p. 29).

Amber Sprenkels and Bas Westerbaan. Don’t throw your nonces out with the
bathwater: Speeding up Dilithium by reusing the tail of y. Cryptology ePrint
Archive. 2021. URL: https://eprint.iacr.org/2020/1158 (visited on Jan. 29,
2024) (cit. on p. 9).

Unified Extensible Firmware Interface version (Release 2.10). Specification. UEFI
Forum, Inc., 2022. URL: https : / /uefi . org/ sites /default/ files/
resources /UEFI _Spec _2_10_Aug29 . pdf (visited on Jan. 22, 2024) (cit.
onp. 2).

187

https://doi.org/10.4271/11-02-02-0008
https://doi.org/10.1007/978-1-4419-5906-5_32
https://doi.org/10.1007/978-1-4419-5906-5_32
https://doi.org/10.1007/978-1-4419-5906-5_32
https://doi.org/10.1007/978-1-4419-5906-5_32
https://doi.org/10.1007/978-3-030-35423-7_19
https://eprint.iacr.org/2019/1166
https://eprint.iacr.org/2019/1166
https://doi.org/10.1007/BF02242355
https://doi.org/10.1007/BF02242355
https://www.st.com/en/microcontrollers-microprocessors/stm32f407vg.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f407vg.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://eprint.iacr.org/2020/1158
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_10_Aug29.pdf
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_10_Aug29.pdf

Bibliography

[Vig21]

[W3C21]

[Wig24]

[WTJB*20]

(ZZWY*21]

188

Benoit Viguier. “A Panorama on Classical Cryptography.” PhD thesis. Radboud
University, 2021. 1SBN: 978-9-463-32806-7. URL: https://hdl.handle.net/
2066/241047 (cit. on p. 13).

Emil Lundberg, Akshay Kumar, J.C. Jones, Michael Jones, and Jeff Hodges.
Web Authentication: An API for accessing Public Key Credentials - Level 2. W3C
Recommendation. https://www.w3.0rg/TR/2021/REC-webauthn-2-20210408/.
W3C, 2021 (cit. on p. 2).

Thom Wiggers. “Post-Quantum TLS” PhD thesis. Radboud University, 2024.
ISBN: 978-9-464-73330-3. URL: https://hdl.handle.net/2066/300702 (cit.
on p. 13).

Wen Wang, Shanquan Tian, Bernhard Jungk, Nina Bindel, Patrick Longa, and
Jakub Szefer. “Parameterized Hardware Accelerators for Lattice-Based Cryp-
tography”” In: IACR Transactions on Cryptographic Hardware and Embedded
Systems 2020.3 (2020), pp. 269-306. IsSN: 2569-2925. DOI: 10 . 13154/ tches.
v2020.173.269-306. URL: https: //tches.iacr.org/index.php/TCHES/
article/view/8591 (cit. on pp. 59, 96).

Cankun Zhao, Neng Zhang, Hanning Wang, Bohan Yang, Wenping Zhu, Zheng-
dong Li, Min Zhu, Shouyi Yin, Shaojun Wei, and Leibo Liu. “A Compact and
High-Performance Hardware Architecture for CRYSTALS-Dilithium?” In: JACR
Transactions on Cryptographic Hardware and Embedded Systems 2022.1 (2021),
Pp- 270-295. 1SSN: 2569-2925. DOI: 10.46586/tches.v2022.71.270-295. URL:
https://tches.iacr.org/index.php/TCHES/article/view/9297 (cit. on
p- 23).

https://hdl.handle.net/2066/241047
https://hdl.handle.net/2066/241047
https://hdl.handle.net/2066/300702
https://doi.org/10.13154/tches.v2020.i3.269-306
https://doi.org/10.13154/tches.v2020.i3.269-306
https://tches.iacr.org/index.php/TCHES/article/view/8591
https://tches.iacr.org/index.php/TCHES/article/view/8591
https://doi.org/10.46586/tches.v2022.i1.270-295
https://tches.iacr.org/index.php/TCHES/article/view/9297

Summary

Digital signature schemes are one of the core building blocks in modern cryptography.
They protect data against any kind of unauthorized modification. Unfortunately, most
digital signature schemes that are currently in use will be broken with the advent of
cryptographically relevant quantum computers. In order to remain secure in their
presence, we must research new post-quantum digital signature schemes. One of
these schemes is the Dilithium signature scheme. In this thesis, we evaluate whether
Dilithium is suitable for implementation and deployment on embedded platforms.
This question is evaluated from different perspectives. In Chapters 4, 5 and 8,
we look at the speed of the scheme. That is, we evaluate how long it takes to run
Dilithium’s algorithms, and how their run times can be further optimized. In Chapter 6,
we look at its memory usage. In Chapter 7, we implement the scheme on the S32G274A
vehicle network processor and add it as an option from image verification in the chip’s

secure-boot mechanism.

Chapter 4. In this chapter, we present implementations of the Dilithium scheme for
the two types of microcontrollers Arm Cortex-M3 and Cortex-M4. On Cortex-M3, one
of the big challenges is the availability of appropriate instructions for multiplication, as
the most powerful multiply instructions have timings that depend on their data. This
leaks information about the numbers being multiplied, which makes the instructions
unsuitable for secret cryptographic computations. To solve this issue, we propose
two new routines for integer multiplication on Cortex-M3 that are based on smaller

instructions that all execute in constant-time.

Chapter 5. During Dilithium’s signature generation algorithm, some polynomials
are always “small”, i.e. all of their coefficients are always between —f and ff (where
B € {78,196,120}). This allows us to compute their polynomial products modulo a
smaller value of ¢’ € {257, 769} instead of the larger Dilithium modulus q = 8380417.

189

Summary

With this in mind, we build new optimized NTT and polynomial multiplication
algorithms using the smaller moduli and integrate them into the signing algorithm
for Arm Cortex-M4.

Chapter 6. Most microcontroller implementations of Dilithium use 50 to 100 KiB
of RAM, depending on the Dilithium variant that is used. However, many chips only
have up to 8 to 16 KiB of RAM, preventing Dilithium from being used on these devices.
In this chapter, we implement the Dilithium algorithm, but optimize for memory
usage rather than speed. This results in the first implementation of Dilithium for
which the recommended parameter set requires less than 7 KiB of memory for key

and signature generation and less than 3 KiB of memory for signature verification.

Chapter 7. In this chapter, we investigate the practical impact of migrating the
secure boot flow on a vehicle network processor towards post-quantum cryptography.
We create a fault-attack-resistant (against single-targeted fault) implementation of
Dilithium signature verification, which we incorporate into the secure boot flow of
the Hardware Security Engine of the S32G274A.

Chapter 8. The Dilithium signature generation is built around a rejection-sampling
loop: First a nonce (number-only-used-once) vector is generated, then a candidate sig-
nature is generated, and finally the algorithm checks whether the candidate signature
does not leak any information about the secret key. If the candidate signature is safe
to be output, the signing algorithm returns that value; otherwise, all the intermediate
results are discarded, and the process is restarted using a new nonce vector. This
routine is repeated until a safe signature is found. We propose a modification to
the Dilithium algorithm where—when a candidate signature is deemed unsafe—we
reuse some of the nonce material that is still safe for usage in subsequent iterations of
the rejection-sampling loop, instead of completely discarding all the nonce material.
With our modification, only part of the nonce vector needs to be regenerated, which

slightly improves the speed of the Dilithium signing algorithm.

190

Samenvatting

Digitale handtekeningsystemen zijn een veelgebruikte bouwsteen in de cryptografie.
Ze beveiligen digitale informatie (data) tegen ongeautoriseerde wijzigingen. Wanneer
cryptografisch relevante kwantumcomputers in de toekomst gerealiseerd worden,
zullen deze de meest gebruikte digitale handtekeningsystemen eenvoudig kunnen kra-
ken. Daarom moet er onderzoek worden gedaan naar nieuwe post-kwantum digitale
handtekeningsystemen die nog steeds veilig zijn wanneer dit soort kwantumcompu-
ters daadwerkelijk bestaan. Een van de opties is het handtekeningsysteem Dilithium.
In dit proefschrift beoordelen we of Dilithium geschikt is voor implementatie en

gebruik in ingebedde systemen.

We benaderen deze vraag vanuit verschillende invalshoeken. In Hoofdstukken 4, 5
en 8 kijken we naar de snelheid van het systeem. Oftewel, we bekijken de rekentijd van
Dilithium, en we zoeken optimalisaties om de duur verder te verkorten. In Hoofdstuk 6
kijken we naar de hoeveelheid geheugen die het systeem gebruikt; en in Hoofdstuk 7
gebruiken we het systeem als onderdeel van het secure-boot mechanisme van de

S32G274A voertuignetwerkprocessor.

Hoofdstuk 4. In dit hoofdstuk presenteren we implementaties van Dilithium voor
twee categorieén van microcontrollers, namelijk de Arm Cortex-M3 en Cortex-M4.
Een belangrijk obstakel op Cortex-M3 is de afwezigheid van snelle instructies voor
vermenigvuldiging, omdat de meest voor de hand liggende instructies een uitvoertijd
hebben die athankelijk is van de data waarop ze uitgevoerd worden. Dit lekt informatie
over de getallen die vermenigvuldigd worden, wat de instructies ongeschikt maakt
voor cryptografische berekeningen op geheime data. Daarom gebruiken we twee
nieuwe procedures voor de vermenigvuldiging van getallen op Cortex-M3, die intern

gebruik maken van instructies die altijd dezelfde uitvoertijd hebben.

191

Samenvatting

Hoofdstuk 5. In het algoritme wat handtekeningen genereert zijn er een aantal
polynomen die altijd “klein” zijn; oftewel, al hun coéfficiénten hebben een waarde
tussen —f en f (met § € {78,196, 120}). Dit kunnen we gebruiken om het verme-
nigvuldigen van deze polynomen te versnellen door kleinere moduli ¢’ € {257, 769}
te gebruiken in plaats van de grotere Dilithium-modulus ¢ = 8380417. We maken
nieuwe geoptimaliseerde NTT-algoritmes gespecialiseerd voor deze kleinere moduli

en gebruiken ze in het genereren van handtekeningen op Cortex-M4.

Hoofdstuk 6. De meeste implementaties van Dilithium voor microcontrollers ge-
bruiken 50 tot 100 KiB geheugen, athankelijk van de variant van Dilithium die gebruikt
wordt. Veel chips hebben echter maar 8 tot 16 KiB geheugen beschikbaar, waardoor
er geen implementaties zijn die op deze chips uitgevoerd kunnen worden. In dit
hoofdstuk implementeren we het Dilithium-algoritme opnieuw, maar dit keer opti-
maliseren we voor een vermindering in geheugengebruik in plaats van uitvoertijd.
Dit leidt tot de ontwikkeling van de eerste implementatie van Dilithium waarvan de
standaardvariant minder dan 7 KiB geheugen gebruikt voor het genereren van sleutels
en handtekeningen, en minder dan 3 KiB geheugen gebruikt voor het controleren van

handtekeningen.

Hoofdstuk 7. In dit hoofdstuk kijken we naar de impact die de migratie naar
post-kwantum cryptografie heeft op de secure-boot implementaties van voertuig-
netwerkprocessors. Hiervoor maken we een glitch-bestendige implementatie voor
de controle van Dilithium-handtekeningen, en integreren we deze in de secure-boot

implementatie van de Hardware Security Engine van de S32G274A chip.

Hoofdstuk 8. Het Dilithium-handtekeningenalgoritme doet meestal meerdere po-
gingen tot het genereren van een handtekening, voordat er succesvol een handte-
kening gemaakt kan worden. Er wordt eerst een uniform-willekeurige nonce-vector
gegenereerd, waarna er met die nonce-vector een voorlopige handtekening wordt
gemaakt. Tenslotte controleert het algoritme of de voorlopige handtekening geen
informatie over de geheime sleutel bevat. Als dit wél het geval is, dan worden alle tus-
sentijdse variabelen gewist en start het proces opnieuw met een nieuwe nonce-vector.
Deze procedure wordt dan herhaald totdat er een geschikte handtekening is gevonden.

In dit hoofdstuk stellen we een aanpassing aan het algoritme voor, die - wanneer

192

een voorlopige handtekening ongeschikt blijkt — een deel van de nonce-vector her-
gebruikt in opvolgende pogingen van het algoritme, in plaats van de nonce-vector
altijd volledig te wissen. Met onze aanpassing hoeft soms alleen een deel van de

nonce-vector opnieuw gegenereerd te worden, wat leidt tot een snellere versie van

het handtekeningenalgoritme.

193

Acknowledgements

I feel like I cannot really claim that I wrote this dissertation by myself, as I have had
an unmeasurable amount of support from the people in my life during the five years
that led to this point. This thesis would not have been written without you. I hope I
have made you proud. <3

First, I would like to thank the Radboud University, NXP Semiconductors, and
MPI-SP for hosting me during my PhD. All have been excellent places to work, and I
will miss the atmosphere of their offices. I will miss my desk in the room formerly
called PQHQ; the desk that has been my second home for five years.

Furthermore, I would like to acknowledge the Horizon 2020 research and innovation
program of the ERC (Starting Grant 805031) and NXP Semiconductors, as all of the

research bundled within this thesis has been funded by one of these sources.

To my supervisors:

Peter, I feel immensely lucky to have crossed your path. You have been an amaz-
ing supervisor. From the start you have submerged me in a deluge of enthusiasm,
confidence, research ideas, and connections. Your authenticity and faithfulness know
no limits. For every challenge, be it intellectual, emotional, or interpersonal, I could
always rely on you to support me and to guide me towards the next challenge. I am
grateful for your pragmatic attitude, your encouragement to visit conferences and
academic friends, and your recognition of engineering as a core part of cryptographic
research. I am grateful for the confidence that you have had in me, even in moments
when my own supply of confidence was depleted. May your food be excellent, and
your beer be cold.

Joppe, with confidence I can say that my time at NXP has been the most productive
time during all of my PhD. Most of all this has been because of your amazing ability
to lead and manage me. Naturally, I am very grateful that you were willing to extend

our professional relationship beyond my internship at NXP by becoming my second

195

https://doi.org/10.3030/805031
https://www.nxp.com

Acknowledgements

supervisor. In your role, you were always quick to recognize and ward off distractions
to my work, and to steer my focus (back) towards the goal of a project. Thank you

for teaching me how to bring projects (like writing a PhD thesis) to a finished state.

During these five years, I have had the pleasure to meet and work with so many
people. This is the part where I will have to concede that I will not be able to call out
everybody by name. Thank you all nonetheless.

First and foremost, thank you to my collaborators, especially Amin, Bas, Benoit,
Denisa, Fabio, Joost, Joppe, Matthias, Vincent, and Yi. I feel privileged to have
been able to work together with bright minds like you. Thank you for complementing
the gaps in my abilities, as I have done my best to complement yours. I am proud of
the work we produced together.

Thank you to Azade, Benoit, Erik, Jan, Joppe, Marrit, Matthias, Peter, Pol,
Thom, and Vincent for proofreading parts of this thesis and preventing many errors
from surviving until the final version. Thanks to the anonymous reviewers of my
papers for your helpful comments. Thanks to the reading committee, prof. dr. Lejla
Batina, dr. Vadim Lyubashevsky, prof. dr. ir. Nele Mentens, prof. dr. Damien
Stehlé, prof. dr. Bo-Yin Yang, for offering your time to review my manuscript.

Ronny, thank you for being such a stable bright presence in the digital security
department. Thank you Irma, Janet, Shanley, Simone, for keeping it running.

Thanks to my (ex-)colleagues, Anna, Azade, Benoit, Christine, Denisa, Joost,
Joost, Krijn, Marloes, Matthias, Pol, Thom; for sharing shots of Fireball in the
late evenings; for taking early morning dives in the Adriatic Sea with me; for the
KLM wine we drank when the world was ending. Thank you for our discussions and
enlightenment; for the camaraderie that we enjoyed together; and for being the role
models that you are.

A huge thanks goes out to the cryptographic community. Thank you for providing
a welcoming space for me to meet people, and to learn about your different cryp-
tographic challenges and solutions. Thank you to all the friends that I have met
along the way. The actual list of names is too long to list here, and attempting to
list them all would be ill-advised—as I would surely forget some of them. Thank you
for our talks; for looking after me in unsafe situations; for our late-night parties on
the Croatian beach or in underground Praguan karaoke bars; for that time I had a

rough incident at RWC’23, and we skipped the next session to get ice cream together.

196

A special shout-out goes out Florine and Julius. You have emotionally supported
me more than you probably realize.

I am furthermore very grateful for the opportunity to travel as much as I have.
Thanks to everybody that has helped facilitate this, as well as everybody that par-
ticipated with me. In particular, thank you Bo-Yin Yang for inviting me to Taipei
twice.

To, andzela and S1mba, I am grateful that fate led us together during Covid times.
Thanks for the hundreds of fun games of CS over the years. Let’s keep rushing B and
do not stop.

Then there are all of my friends at #RU. Although I usually describe us as a chat group
of friends to people in the out-group, this does not even remotely convey how much
time we spend together. I feel connected to you in a way that is truly unique. I like
climbing and bouldering and going on weekends together; I like our movie nights, our
pub evenings, our camping trips, and all the other things we do. It does not matter
what we do specifically, because I really just like hanging out with you. I am grateful
for our friendship and I hope that it may be everlasting.

Special thanks go out to all the folks in #academia. Having your support during my
PhD felt like having a cheat code. Thank you for your all the invaluable information;
and for allowing me to vent, and then responding with effective pep talks.

My close friends, Abel, Annelies*, Annemiek”, Bart, Erik, Gerdriaan, Hanne",
Jille, Joost, Judith, Linda*, Loeka, Loeka, Mara*, Margot, Margot, Marrit”, Pax,
Pol, Rian, Rik?*, Sjors*, and Yorick; I love you guys. (To the stars* among you,
thank you for protecting me and supporting me during a ride on a rollercoaster of
self-discovery.) Thank you for your company, and for your support in times of tough
decisions. You mean the world to me.

Lastly, thanks to my family, Frank, Marianne, Rik, Bram, Koen, Sanne, Anne-

miek, and Carla, for your persistent love and support.

And to Marrit: I love you. Let’s have many more adventures together.

Amber Sprenkels
Nijmegen, June 2024

197

About the author

Amber Sprenkels was born on the 12th of April 1994 in Heesch, The Netherlands.
After graduating from high school she studied Chemistry at the Faculty of Science
of Radboud University in Nijmegen, from which she received her Bachelor’s degree
in 2016. Thereafter, she switched to computing science and started specializing in
cybersecurity and cryptographic engineering. Her Master’s thesis, entitled ECC
implementation on Sandy Bridge: The cost of cofactor h = 1, was supervised by Peter
Schwabe. She received her Master’s degree in Computing Science in 2019.

After obtaining her Master’s degree, she continued working with Schwabe at
Radboud University, pursuing a PhD on the implementation of post-quantum cryp-
tography. During her PhD, she has interned as a cryptographic engineer with NXP
Semiconductors in 2021-2022, supervised by dr. Joppe Bos. This thesis presents a
selection of her work from 2019 to 2023.

List of publications

The following list is a list of academic publications that Amber has coauthored (in
reverse-chronological order):

« Joppe W. Bos, Brian Carlson, Joost Renes, Marius Rotaru, Amber Sprenkels, and
Geoffrey P. Waters. “Post-quantum secure boot on vehicle network processors.”
In: 20th escar Europe - The World’s Leading Automotive Cyber Security Conference
(15. - 16.11.2022). Ruhr-Universitit Bochum, 2022, pp. 112-125. po1: 10.13154/
294-9372. URL: https://eprint.iacr.org/2022/635

« Joppe W. Bos, Joost Renes, and Amber Sprenkels. “Dilithium for Memory
Constrained Devices” In: AFRICACRYPT 2022: 13th. Ed. by Lejla Batina and

Joan Daemen. Vol. 2022. Lecture Notes in Computer Science. Springer, July

199

https://doi.org/10.13154/294-9372
https://doi.org/10.13154/294-9372
https://eprint.iacr.org/2022/635

About the author

200

2022, pp. 217-235. DOIL: 10.1007/978-3-031-17433-9_10. URL: https:
//eprint.iacr.org/2022/323

Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Amber
Sprenkels. “Faster Kyber and Dilithium on the Cortex-M4.” In: ACNS 22: 20th
International Conference on Applied Cryptography and Network Security. Ed. by
Giuseppe Ateniese and Daniele Venturi. Vol. 13269. Lecture Notes in Computer
Science. Springer, June 2022, pp. 853-871. DOI: 10.1007/978-3-031-09234~
3_42. URL: https://eprint.iacr.org/2022/112

Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels. “Com-
pact Dilithium Implementations on Cortex-M3 and Cortex-M4” In: IACR
Transactions on Cryptographic Hardware and Embedded Systems 2021.1 (2021).
Artifact available at https://artifacts.jacr.org/tches/2021/al, pp. 1-24.
ISSN: 2569-2925. po1: 10.46586/tches.v2021.41.1-24

Fabio Campos, Lars Jellema, Mauk Lemmen, Lars Miiller, Amber Sprenkels, and
Benoit Viguier. “Assembly or Optimized C for Lightweight Cryptography on
RISC-V?” In: CANS 20: 19th International Conference on Cryptology and Network
Security. Ed. by Stephan Krenn, Haya Shulman, and Serge Vaudenay. Vol. 12579.
Lecture Notes in Computer Science. Springer, Dec. 2020, pp. 526-545. DOI: 10.
1007/978-3-030-65411-5_26. URL: https://eprint.iacr.org/2020/836

Peter Schwabe and Amber Sprenkels. “The Complete Cost of Cofactor h = 1”
In: Progress in Cryptology - INDOCRYPT 2019: 20th International Conference in
Cryptology in India. Ed. by Feng Hao, Sushmita Ruj, and Sourav Sen Gupta.
Vol. 11898. Lecture Notes in Computer Science. Springer, Dec. 2019, pp. 375-397.
DOI: 10.1007/978-3-030-35423-7_19. URL: https://eprint.iacr.org/
2019/1166

https://doi.org/10.1007/978-3-031-17433-9_10
https://eprint.iacr.org/2022/323
https://eprint.iacr.org/2022/323
https://doi.org/10.1007/978-3-031-09234-3_42
https://doi.org/10.1007/978-3-031-09234-3_42
https://eprint.iacr.org/2022/112
https://artifacts.iacr.org/tches/2021/a1
https://doi.org/10.46586/tches.v2021.i1.1-24
https://doi.org/10.1007/978-3-030-65411-5_26
https://doi.org/10.1007/978-3-030-65411-5_26
https://eprint.iacr.org/2020/836
https://doi.org/10.1007/978-3-030-35423-7_19
https://eprint.iacr.org/2019/1166
https://eprint.iacr.org/2019/1166

	Contents
	Introduction
	Digital signature schemes
	Post-quantum cryptography
	Dilithium
	Research objective
	Organization of this thesis
	Contributions
	Artifacts and measurement data

	Preliminaries
	Pronouns
	Notation
	Signature schemes
	Security fundamentals
	Signature schemes in theory
	Security notions
	Signature schemes in practice

	Modular integer multiplication
	Barrett reduction
	Montgomery multiplication
	Montgomery multiplication with precomputed constants

	Cortex-M3 and Cortex-M4
	The Armv7E-M Thumb architecture
	STM32F4 Discovery
	Arduino Due

	Software & measurements
	Side-channel resistance
	Benchmarks

	Dilithium
	Lattice-based cryptography
	Dilithium simplified
	KeyGen
	Sign
	Verify
	Security

	Dilithium
	Symbols and subroutines
	KeyGen, Sign & Verify
	Parameter sets
	Randomized signatures
	Rejection sampling

	The number theoretic transform

	Fast Dilithium on Cortex-M3 and Cortex-M4
	Introduction
	Preliminaries
	Improving speed on Cortex-M4
	Fast Constant-Time NTTs on Cortex-M3
	smull and smlal
	Cooley–Tukey and Gentleman–Sande Butterflies
	NTT, inverse NTT, and pointwise multiplication

	Results
	NTT performance
	Cortex-M4 performance
	Cortex-M3 performance
	Profiling

	Kyber and NewHope on Cortex-M3

	NTT optimizations on Cortex-M4
	Introduction
	Contributions

	Preliminaries
	Fermat Number Transform

	Improvements to the NTT
	FPU registers & improved layer merging
	Switch to CT-butterflies

	Small NTTs for Dilithium
	FNT for Dilithium2 and Dilithium5
	NTT over 769 for Dilithium3
	Asymmetric Multiplication

	Results
	Performance of NTT-related functions
	Performance of the full scheme

	Dilithium for memory-constrained devices
	Introduction
	Basic time-memory trade-offs
	Strategy 1: A in flash
	Strategy 2: A in SRAM
	Strategy 3: streaming A and y
	Splitting signature generation in an offline and online phase
	Results

	Introducing advanced memory optimizations
	Signature generation
	Streaming A and y
	Compressing w
	Compressing cs1, cs2, and ct0
	Variable Allocation
	Summary of optimizations

	Dilithium key generation and signature verification
	Key Generation
	Signature Verification

	Results & discussion
	Conclusion

	Post-quantum secure boot on vehicle network processors
	Introduction
	Secure boot
	Post-quantum digital signatures for secure boot
	Related work
	Contribution
	Organization

	S32G vehicle network processors
	Platform description
	Secure boot on the S32G274

	S32G274 Post-quantum Secure Boot
	Dilithium software
	Firmware integration
	Performance results

	Conclusion

	Dilithium nonce recycling
	Introduction
	Dilithium recap
	Underlying identification scheme
	Vanilla Dilithium

	Our proposal
	Resample only the prefix of y after failed z-check
	Compatibility with streaming implementations

	Security
	Adapting the ROM proof of [BBDD+23]
	From Sign-alt-z to Trans-alt-z
	Zero-knowledgeness of Trans-alt-z
	Min-entropy of w1

	Performance
	Operations saved
	Optimized implementation

	HAETAE
	Conclusion
	Resampling only y1 after failed r0-check
	Sign-alt-r0
	Security
	Performance

	Derivation of equation 8.1

	Conclusion
	Bibliography
	Summary
	Samenvatting
	Acknowledgements
	About the author

