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1
1 Introduction

1.1 Digital signature schemes

When people talk directly to one another (e.g., while in the same room), they can trust
that the words they hear from each other are unaltered. If nobody is around to listen
in to the conversation, they can also trust that the contents of their conversation
remain private, as long as the participants do not disseminate it further.

Unfortunately, many of our communications do not happen directly, but rather
indirectly through intermediates or hops; be it a courier, a hard disk,1 a wire, or a
radio wave. Protecting these channels is often practically impossible, as couriers can
be bribed; hard disks can be rewritten; and wires and radio waves can be intercepted.
Consequently, most channels are by nature not trustworthy.

Throughout history, humans have applied mechanisms of enciphering messages to
protect their communications from prying eyes, for example the Caesar substitution
cipher, which was used by the Roman emperor Julius Caesar [Sin00]. Additionally,
humans have recognized or invented mechanisms that are presumed hard to recreate
by illegitimate parties. For instance, in the case of a €20 bill (which is essentially a
statement from the European Central Bank that “this sheet of cotton is worth €20”),
I trust its legitimacy because of its abundance of watermarks, microprints, special
inks and other features that are hard to mimic. Maybe the most common example is
the handwritten signature which is often presumed to be hard to mimic by anyone
other than the original author. It is an indication from the author that they have
agreed to the contents of the signed document.

In the digital world, the physical elements are often abstracted away, and we cannot
rely on physical means to protect the confidentiality or authenticity of our communi-

1Technically, this data is not in transit but at rest. Still, what is a stored piece of data, if not a message to
someone (even oneself) in the future?

1
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cations. Cryptography provides us with a method to protect the confidentiality and
authenticity of information by using mathematical operations.

One core cryptographic component for protecting the authenticity of a piece of
data is a digital signature scheme [DH76]. A digital signature is a small string of bytes
that accompanies a message (which is also a string of bytes). Signing identities—like
the European Central Bank or the agreeing parties of a contract—are associated with
key pairs, which consist of a secret key and a public key. A signing algorithm uses the
secret key to generate a digital signature over some message. Later, a verification
algorithm uses the message, the signature, and a public key to check whether the
signature correctly authenticates the message. A correct signature indicates that the
signature has been generated by somebody who knows the secret key (authentication),
and that the message has been unaltered since (integrity).

Cryptographic signature schemes are such a valuable building block that they
are—nowadays—used virtually everywhere. For example, Transport Layer Security
(used to secure protocols like HTTPS, SMTPS, etc.) uses digital signatures to au-
thenticate the identities of servers (and clients) on the web [IETF18]; cryptographic
authenticators use digital signatures to replace (or supplement) passwords, authenti-
cating users to online services [ITU18; W3C21]; messaging protocols use signatures to
authenticate the identities of communicating parties [IETF23]; consumer devices use
digital signatures to ensure the authentication and integrity of kernel images using
secure boot [UEFI22]; certificate transparency logs provide auditability by anyone
using signatures [IETF21]; et cetera. It is hard to express the extent to which the
modern digital world relies on digital signature schemes. As such, it is paramount
that they remain efficient and secure.

1.2 Post-quantum cryptography

Almost all currently deployed signature schemes are based on either the discrete
logarithm problem (DLP) [DH76] (or its elliptic-curve variant (ECDLP) [Kob87; Mil86])
or the RSA problem (RSA) [RSA78]. These problems are presumed to be hard to solve
for classical computers, i.e., the devices that we all know as computers. However,
quantum computers can theoretically solve these problems efficiently using Shor’s
algorithm, and consequently completely break all the cryptographic systems based
on them [Sho94]. At the time of writing, quantum computers are not yet very

2
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1.2 Post-quantum cryptography

powerful—far from being able to break current deployments of the DLP or the RSA
problem [BSI20b; IBM24]. Yet, in recent years we have seen consistent advances
in their capabilities. While few field experts expect a cryptographically relevant
quantum computer (CRQC) to be constructed in the next 10 years, many expect that
one will be built eventually [GRI23].

Consequently, the cryptographic community has shifted a lot of its focus towards
developing post-quantum cryptography: cryptography that remains secure even in the
presence of a CRQC. They rely on problems different than the DLP and the RSA prob-
lem. Because of the quantum-computing threat, some government and standardization
bodies have started to standardize or recommend specific instances of post-quantum
cryptographic schemes, e.g. the German BSI [BSI20a], the French ANSSI [ANSSI22],
the (international) IRTF [IRTF18; IRTF19], or the American NSA [NSA22]. However,
by far the largest centralized effort for the evaluation of post-quantum schemes was
spearheaded by the American National Institute of Standards and Technology (NIST).

In 2016, NIST called for proposals for new post-quantum schemes to replace
the existing standards for key establishment (SP 800-56A [NIST18] and SP 800-
56B [NIST19b]) and digital signatures (FIPS 186-4 [NIST13]) [NIST16]. After receiving
69 submissions in 2017, NIST narrowed down to 26 schemes advancing to the sec-
ond round in 2019, and 7 finalists in 2020 [NIST19a; NIST20a]. In the end, NIST
standardized 4 schemes: Kyber for key encapsulation, and Dilithium [NIST22a], Fal-
con [PFHK+22], and SPHINCS+ for digital signatures. SPHINCS+ [BHKN+19]—which
is based only on the security of hash functions—is considered too slow for many
applications [BKNS20], leaving Dilithium [DKLL+18] and Falcon, which are based
on lattice optimization problems. Because of the inapplicability of SPHINCS+, break-
throughs in attacks on lattices could leave implementors of post-quantum crypto
with no standardized alternatives. Therefore, NIST called for additional signature
schemes based on other hard problems (such as codes, multivariate, isogenies, or
MPC-in-the-head) [NIST23a]. At the time of writing, that standardization process is
still ongoing.

3
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1.3 Dilithium

This thesis focuses on the Dilithium signature scheme. It was submitted to the
NIST competition in 2017 by the CRYSTALS Team2 together with its sibling Ky-
ber [ABDK+17; DKLL+17], and published as an article in TCHES [DKLL+18]. Dilithi-
um is a scheme which is based on the module learning with errors (MLWE) and module
shortest integer solution (MSIS) hard problems. These are adaptations of the learning
with errors (LWE) [Reg05] and shortest integer solution (SIS) [Ajt96] hard problems in
lattice cryptography. The scheme comes in three parameter sets: Dilithium2, Dilithi-
um3, and Dilithium5—corresponding to three different security levels specified by
NIST—ranging from 128 to 256 claimed bits of security. Depending on the parameter
set, the public keys are 1.3 to 2.6 kilobytes in size, and the signatures are 2.4 to 4.6
kilobytes in size.

The scheme is built around arithmetic of 256-coefficient polynomials modulo a
23-bit prime number 𝑞 = 223 − 213 + 1. It also includes many calls to deterministic
random number generation and hashing operations, which are all based on the SHAKE
extensible output function [BDPA13; NIST15a].

The name of the scheme comes from the science fiction series Star Trek. Dilithium is
a fictional material that occurs naturally in crystal form. In Star Trek, these dilithium
crystals are a critical controlling substance in the warp drive: a fictional type of
engine at the core of a spaceship that allows for travel faster than the speed of light
(warp-speed). These warp drives, and the engineering thereof, are what inspired the
title of this thesis.

1.4 Research objective

During the NIST competition, the cryptographic community set out to evaluate all
the different schemes. Many evaluation perspectives have been considered, such as a
scheme’s security properties, their suitability for incorporation into existing protocols,
and estimating their performance characteristics. Over the last five years, I have done

2CRYSTALS stands for “Cryptographic Suite for Algebraic Lattices”, which consists of Roberto Avanzi,
Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Pe-
ter Schwabe, Gregor Seiler, and Damien Stehle (https://web.archive.org/web/20240202143804/
https://pq-crystals.org/).

4
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1.5 Organization of this thesis

my best to contribute to this process by evaluating the question: How do embedded
software implementations of Dilithium perform?

Most of the work presented in this thesis (Chapters 4 to 6) approaches this question
by exploring possible optimization strategies to reduce the algorithm’s latency or its
memory footprint. We also evaluate the impact of adding the Dilithium scheme to an
existing embedded system in Chapter 7.

1.5 Organization of this thesis

Chapter 2 covers all of the notation used in this thesis, describes some of the basic
concepts in cryptographic engineering, and introduces the platforms that we will
be optimizing for. Then Chapter 3 focuses on the preliminaries for the Dilithium
signature scheme. Chapters 4 to 8 contain the main technical contributions of this
thesis, which will be summarized in the next section. Finally, in Chapter 9, we will tie
things together and formulate an outlook toward the future.

1.6 Contributions

All of the work presented in this thesis has been realized in collaboration with one or
more co-authors. This section outlines the academic contribution that corresponds to
each chapter, with a focus on the parts that I contributed personally. In some places I
use the phrase engineering work, which I use to describe the entirety of developing
software. This not only includes writing code, but also designing the software, setting
up build and debugging setups, designing and writing tests, and writing and executing
benchmarks. Lastly I would like to remark that, in our publishing culture, author lists
are not ordered in order of contribution but alphabetically.

Chapter 4: Fast Dilithium on Cortex-M3 and Cortex-M4

In Chapter 4, we develop and present Dilithium implementations for the Arm Cortex-
M3 and Cortex-M4 microcontroller platforms. This chapter is based on the paper that
was published in TCHES 2021, Issue 1:

5
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1 Introduction

Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels. “Com-
pact Dilithium Implementations on Cortex-M3 and Cortex-M4.” In: IACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2021.1 (2021). Artifact
available at https://artifacts.iacr.org/tches/2021/a1, pp. 1–24. issn:
2569-2925. doi: 10.46586/tches.v2021.i1.1-24.

The original aim of the project was to manufacture fast implementations, as well
as to analyze the general memory usage of those implementations. We achieved new
speed records for Cortex-M4. Additionally, we wrote the first implementations of
Kyber, Dilithium, and NewHope for Cortex-M3. The paper also contained an analysis
of different strategies for memory reduction of Dilithium implementation. However,
the presentation of that work has been moved to Chapter 6, such that all the work on
memory improvements of Dilithium is combined into Chapter 6.

The main contribution of this project is the Cortex-M3 implementation, to which
we all contributed an equal amount. The memory reductions (presented in Section 6.2)
were devised and implemented predominantly by me. All of us contributed equally
to the writing of the paper.

Chapter 5: NTT optimizations on the Cortex-M4

The second “speed-optimization” chapter describes various improvements to im-
plementations of the Kyber and Dilithium number theoretic transforms (NTTs) for
Cortex-M4. This chapter is based on the paper presented at ACNS 2022:

Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Amber
Sprenkels. “Faster Kyber and Dilithium on the Cortex-M4.” In: ACNS 22: 20th
International Conference on Applied Cryptography and Network Security. Ed. by
Giuseppe Ateniese and Daniele Venturi. Vol. 13269. Lecture Notes in Computer
Science. Springer, June 2022, pp. 853–871. doi: 10.1007/978-3-031-09234-
3_42. url: https://eprint.iacr.org/2022/112.

The publication presented three main contributions: First, we presented speed
records for the Kyber NTT (i.e. a 16-bit NTT) by using improvement techniques that
were thus far only used for other post-quantum schemes. Second, we found a faster
instruction sequence for packed 16-bit Barrett reduction. Third, we presented a faster
method to compute 𝑐s1 and 𝑐s2 in Dilithium, by using a smaller 𝑞′ ∈ {257, 769} instead
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1.6 Contributions

of the Dilithium 𝑞. We measured and reported on the speed improvements of the
completed implementations.

My primary contribution to that paper was providing the insight that the 𝑐s1 and
𝑐s2 multiplications in Dilithium could be executed using NTTs using smaller moduli
(i.e., the third contribution). Although I did contribute to the rest of the project in
a qualitative fashion, all of the engineering work on the Kyber implementation was
done by my coauthors. Therefore (and because the subject of this thesis is Dilithium
and not Kyber), I have removed most of the parts about Kyber, changing the main
focus of Chapter 5 to Dilithium.

Chapter 6: Dilithium for memory-constrained devices

Chapters 4 and 5 focus on improving Dilithium implementations in terms of execution
speed. They prioritize speed at the cost of memory usage, which disqualifies more
memory-constrained chips from running Dilithium. Therefore, in Chapter 6, we
analyze and optimize the memory usage of Dilithium. We aim to gain insight into the
general memory usage for a Dilithium implementation and to determine the minimal
amount of memory needed to run Dilithium.

Section 6.2 is based on Section 5 of the paper published in TCHES 2021 ([GKS21],
i.e. the paper that Chapter 4 is based on). In Section 6.2, we analyze different (high-
level) time-memory tradeoffs that arise when implementing Dilithium. As mentioned
earlier, that analysis was done mostly by me.

The rest of the chapter is based on the paper presented at AfricaCrypt 2022:

Joppe W. Bos, Joost Renes, and Amber Sprenkels. “Dilithium for Memory Con-
strained Devices.” In: AFRICACRYPT 2022: 13th. Ed. by Lejla Batina and Joan
Daemen. Vol. 2022. Lecture Notes in Computer Science. Springer, July 2022,
pp. 217–235. doi: 10.1007/978-3-031-17433-9_10. url: https://eprint.
iacr.org/2022/323.

In the paper, we present a new memory-optimized implementation of Dilithium
written purely in C. We use multiple different (low-level) memory-optimization
strategies, such as the use of alternative NTTs modulo a smaller 𝑞′, the compression
of the polynomials 𝑐 and w, and carefully hand-crafted allocations of all the variables
in the Keygen, Sign, and Verify algorithms. We measure the achieved memory usage
and the impact on the execution speed of the algorithms.
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This paper is one of two projects that I did during an internship at NXP Semicon-
ductors during 2021–2022. All of the engineering work of this paper has been done
solely by me, with the other authors providing technical and organizational guidance.
We all contributed equally to the writing of the paper.

Chapter 7: Post-quantum secure boot on vehicle network
processors

In Chapter 7, we divert from implementing Dilithium to integrating Dilithium. The
previous chapters focus on improving Dilithium implementations, but their evaluation
is based on in-vitro setups. For example, their benchmarks run only the signature
algorithms (i.e., no operating system or application code), and the chips are configured
for consistent measurements rather than real-world deployments. This approach is
very suitable for reproducibility and comparability with other schemes and imple-
mentations, but it risks missing factors that arise when integrating the scheme into
real-world applications. Chapter 7 aims to fill this knowledge gap. It is based on the
paper published at ESCAR 2022:

Joppe W. Bos, Brian Carlson, Joost Renes, Marius Rotaru, Amber Sprenkels, and
Geoffrey P. Waters. “Post-quantum secure boot on vehicle network processors.”
In: 20th escar Europe - The World’s Leading Automotive Cyber Security Conference
(15. - 16.11.2022). Ruhr-Universität Bochum, 2022, pp. 112–125. doi: 10.13154/
294-9372. url: https://eprint.iacr.org/2022/635

In the paper, we examined the real-world scenario of protecting kernel images using
secure boot on the S32G274A vehicle network processor. Originally, the secure boot
flow of the S32G274A processor only supported images that are signed by classical
(i.e., pre-quantum) digital signatures. We created a fault-protected Dilithium signature
verification algorithm and added it to the S32G274A’s hardware security engine as an
option for secure boot. Afterward, we examined the impact on the installation and
boot times of the application firmware image.

This paper is the second project that I did during the internship at NXP. I integrated
Dilithium into the S32G274A’s hardware security engine in equal collaboration with
Joost Renes, and together we acquired and analyzed the results. I wrote about one-
third of the paper.
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1.6 Contributions

Chapter 8: Dilithium nonce recycling

This chapter came from the idea to experiment with parallelizing Dilithium across its
rejection-sampling loop iterations, as—in crypto-engineering folklore—it is often best
to parallelize code at the highest possible level. This idea evolved into the observation
that, in some scenarios, particular values in Dilithium’s rejection sampling could be
reused across loop iterations. We identified two concrete optimizations, which when
applied together result in a 3% – 6% speedup for Dilithium signing on Cortex-M4, and
similar speedups for Cortex-M3 and AVX2. The chapter is based on the unpublished
manuscript which is available as:

Amber Sprenkels and Bas Westerbaan. Don’t throw your nonces out with the
bathwater: Speeding up Dilithium by reusing the tail of y. Cryptology ePrint
Archive. 2021. url: https://eprint.iacr.org/2020/1158 (visited on Jan. 29,
2024).

The report proposes both Dilithium optimizations and describes the argumentation
as to why we believe the modifications do not adversely affect the security of the
scheme. We analyze the reduction in the number of primitive operations (e.g., Keccak
permutes, (inverse) NTTs, etc.) and integrate the modifications into existing Dilithium
implementations for Cortex-M3, Cortex-M4, and AVX2. For both modifications, we
measure the reduction of the Dilithium signing latency.

The z-check proposal (Section 8.3.1) was invented by me and the r0-check proposal
(Appendix 8.A) was found in equal collaboration with Bas Westerbaan. I contributed
the engineering work of the simulations and implementations that were involved in
the performance analysis. The ePrint report was written in equal collaboration with
Bas, after which the project was shelved. After the publishing of [BBDD+23], I picked
up the project again and with guidance from Yi Lee I updated the security analysis.
Section 8.6, which analyzes the applicability of our proposals to HAETAE, is based on
discussions with Georg Land. All the changes and additions in Chapter 8 that were
done after the submission of the of the ePrint report3 are written by me.

3That is, version 20211216:094108.

9

https://eprint.iacr.org/2020/1158


1

1 Introduction

1.7 Artifacts and measurement data

This thesis research has been carried out under the research data management policy
of the Institute for Computing and Information Science of Radboud University, The
Netherlands.4

The following research software and datasets have been produced during this PhD
research:

Speed-optimized round-2 Dilithium on Cortex-M3 and Cortex-M4 (Chap-
ters 4 and 6). The software implementations of Dilithium and the benchmarking
measurements that were recorded have been archived at

Amber Sprenkels. Speed-optimized round-2 Dilithium on Cortex-M3 and Cortex-
M4. 2024. doi: 10.5281/zenodo.10706370. url: https://doi.org/10.5281/
zenodo.10706370.

Speed-optimized round-3 Dilithium on Cortex-M4 (Chapter 5). The soft-
ware implementations of Dilithium and the benchmarking measurements that were
recorded have been archived at

Amber Sprenkels. Speed-optimized round-3 Dilithium on Cortex-M4. 2024. doi:
10.5281/zenodo.10707141. url: https://doi.org/10.5281/zenodo.

10707141.

Memory-optimized round-3 Dilithium in pure C (Chapter 6). At the time of
construction, the software implementation became closed-source property of NXP
Semiconductors, and is not publicly archived. The benchmarking measurements have
been archived at

Amber Sprenkels. Memory-optimized round-3 Dilithium in pure C. 2024. doi:
10.5281/zenodo.10708284. url: https://doi.org/10.5281/zenodo.

10708284.

4https://ru.nl/icis/research-data-management/, last accessed February 22nd, 2024.
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1.7 Artifacts and measurement data

Recycling nonces in Dilithium (Chapter 8). The software implementations
of Dilithium and the benchmarking measurements that were recorded have been
archived at

Amber Sprenkels. Dilithium nonce recycling experiments and benchmarks. 2024.
doi: 10.5281/zenodo.10708819. url: https://doi.org/10.5281/zenodo.
10708819.
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2 Preliminaries

The Dilithium signature scheme is such a central part of this thesis, that I have decided
that it deserves its own chapter (Chapter 3). This chapter will set up the mathematical
groundwork and conventions that will be used in the rest of this thesis. Unfortunately,
the line between elements that are “a part of Dilithium”, versus “general cryptographic
knowledge” is very subjective. Which cryptographic elements are basic, and which
ones are specialized? In making this distinction, I have loosely followed the principle
that any unspecialized cryptographic engineer should already know most of the
contents of this chapter as part of their basic repertoire. Even if they have never heard
of Dilithium before, I estimate that most readers should be able to skip this chapter;
and immediately move on to Chapter 3.

In Sections 2.2 and 2.3, we will first cover some of the necessary mathematical
background and notation. Then, in Sections 2.4, 2.5, and 2.6, we will look at some
cryptographic engineering fundamentals. In particular, we will look at some different
modular reduction methods, and we will provide an overview of the Cortex-M4 and
Cortex-M3 architectures, which will become relevant in Chapters 4 through 6.

2.1 Pronouns

As some of the PhD candidates who came before me have done ([Rij19; Vig21; Wig24]),
I would like to take a moment to clarify the perspective in which this manuscript
is written. By now, you may have noticed that both singular form (I ) as well as
plural form (we) are used dynamically throughout this text. This is in contrast to
most academic writing, which is usually written by teams of researchers, and uses we
exclusively.

Likewise in this thesis, we is used to refer to us, the researchers who did the work.
Sometimes however, it includes you (the reader), as we take you with us as we move
through the subject matter. Other times it refers to the cryptographic community in
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the broader sense. However, there are times when I cannot speak for my coauthors.
In these cases I will have to speak from my own soul, in which case I will use I.

2.2 Notation

This thesis follows general mathematical conventions. However, because our math
intersects with computer programming, in some places we use some notation that
might be unconventional. This section serves as a clarifying reference for the notation
that you will find in the rest of the thesis.

Polynomials, vectors, and matrices. Let ℤ be the ring of integers, and let ℤ𝑞 be
the ring of integers modulo 𝑞. ℤ𝑞[𝑋] denotes the polynomial ring in the variable 𝑋
with all coefficients inℤ𝑞. ℤ𝑞[𝑋]/(𝑓 (𝑋)) denotes the quotient ring with all operations
modulo 𝑞 and 𝑓 (𝑋).

Dilithium is built around matrices and vectors of polynomials in ℤ𝑞[𝑋]/(𝑋 𝑛 + 1).
To allow ourselves to distinguish these types of variables from one another, each of
them has a different font. Polynomials are denoted by italic letters (e.g., 𝑐); vectors
use lowercase variable names in boldface (e.g., z); and matrices will use uppercase
variable names in boldface (e.g., A). Polynomial-coefficient indexing is zero-based ; i.e.,
the first coefficient of 𝑐 is 𝑐0. This way, the polynomial coefficient 𝑎𝑘 corresponds to
𝑋 𝑘. However, vector and matrix indexing is one-based, i.e., the first element of z is z1.

Regular polynomial and vector multiplication is represented using conventional
multiply operators (e.g., Az and A ⋅ z). However, pointwise (or coefficient-wise) multi-
plication uses the ∘ operator (e.g., ̂𝑐 ∘ ŝ).

Last, the notation ‖𝑎‖∞ is used to describe the uniform norm (or infinity norm, or
sup norm) of 𝑎. For some polynomial 𝑎 = 𝑎0+⋯+𝑎𝑘−1𝑋 𝑘−1, the uniform norm ‖𝑎‖∞ is
equal to max(|𝑎0|, … , |𝑎𝑘−1|). For vectors and matrices, the uniform norm is computed
recursively from the elements, i.e., ‖z‖∞ = max(‖z1‖∞ , … , ‖z𝑛‖∞).

Modular arithmetic. For integers, 𝑎 mod 𝑞 and 𝑎 mod+ 𝑞 both denote the unique
positive representation of 𝑎 modulo 𝑞, such that 0 ≤ 𝑎 < 𝑞. Additionally, mod± de-
notes the centered modulo operator, i.e., 𝑎 mod± 𝑞 is equal to the unique representation
of 𝑎 modulo 𝑞, such that − 𝑞

2 ≤ 𝑎 < 𝑞
2 . For vectors and polynomials, the mod, mod+ ,

and mod± operations are applied on a coefficient-wise basis of the polynomial(s).
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NTT domain. Polynomials that are represented in the number-theoretic transform
NTT domain (see Section 3.4) have a hat (e.g., ̂𝑐). Moreover, because of the relation
to the fast-Fourier transform algorithm, the NTT domain is sometimes called the
“frequency domain”. Conversely, the “time domain” (or “regular domain”) corresponds
to when polynomials are in their untransformed state.

Shell expansion. Dilithium comes in different variants, and we often find ourselves
describing multiple of these variants at the same time. In these cases, braces indicate
“shell expansion”. For example,Dilithium{3,5} expands to “Dilithium3 andDilithium5”.

Algorithms. All algorithm names can be recognized by their sans-serif names
(e.g., Dilithium2, NTT-1). For variable names, we use either single letters; or we use
names, in which case they also use a sans-serif font family (e.g., sk, pk, seed). We

write 𝑎 ∶= 42 to denote variable assignment, and we write 𝑎
$
← 𝔸 to denote that the

variable 𝑎 is uniformly sampled from the set 𝔸.

Rounding and bit-selection. By convention, ⌊𝑥⌉ denotes the value of 𝑥 rounded
to the nearest integer with ties towards positive infinity; and ⌈𝑥⌉ and ⌊𝑥⌋ denote that
𝑥 is rounded up and down respectively. By similar convention, all measurement data,
whenever rounded, uses rounding with ties towards even numbers. Additionally, we
use a custom syntax for bit-selection operations, based on [Pla21]. That is, [𝑥]𝑘 =
𝑥 mod 2𝑘 selects the lowest 𝑘 bits from 𝑥; and [𝑥]𝑘 = ⌊ 𝑥

2𝑘 ⌋ is equivalent to arithmetically
shifting 𝑥 by 𝑘 positions to the right.

Units. When discussing algorithm speeds and sizes, cc denotes (clock) cycles (and
kcc denotes kilocycles accordingly); KB denotes kilobytes (1000 bytes), and KiB
denotes kibibytes (1024 bytes).

2.3 Signature schemes

Dilithium is a cryptographic signature scheme. The concept of a cryptographic sig-
nature scheme was first proposed in the seminal paper by Diffie and Hellman from
1976 [DH76]. The goal of a signature scheme is to provide authentication and to
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protect the integrity of some message. In layman’s terms: a cryptographic signature
guarantees that a message originates from an identified sender (authentication) and
that the message has not been modified in transit (integrity).

In this subsection, we will briefly cover the fundamentals of cryptographic signature
schemes. For the sake of brevity I have assumed some concepts to be known, for
example the security parameter, probabilistic polynomial time algorithms (PPT), etc.
For more details and deeper definitions, I would like to direct you to [MF21], or
alternatively one of [GB08; KL20].

2.3.1 Security fundamentals

Conceptually, all asymmetric cryptographic constructions are based on some “hard”
problem, i.e., problems that cannot be solved in polynomial time.1 For example,
RSA’s [RSA78] key-only security is based on the hardness of integer factoring, and
elliptic-curve cryptography [Kob87; Mil86] is based on some variant of the elliptic-
curve discrete-logarithm problem. We construct our cryptographic algorithms in such
a way, that if the algorithm can be broken in probabilistic polynomial time (PPT), then
that “breaking algorithm” can be used to solve instances of the underlying problem
in probabilistic polynomial time. The reasoning is that we assume that no efficient
algorithms can exist that solve the hard problem, and therefore no algorithms can
exist that break the scheme. In cryptography, these hypothetical attacking algorithms
are called adversaries (or attackers).

The central instrument that is used to formalize these scenarios, i.e., the breaking
of the scheme or the solving of the hard problem, is the game (or experiment). A
game is a mathematical thought experiment that concretely describes a cryptographic
problem statement. In the experiment, the challenger samples an instance of the
problem and challenges the adversary to find a solution to that instance. Afterward,
the challenger will check whether the solution that was proposed by the adversary
was correct. If the adversary is able to find a correct solution to the instance of the
problem, then the adversary wins the game.

1In practice, this means that the time to solve these problems increases (sub)exponentially as the size of
the inputs increases. As long as we make the inputs large enough, (e.g., we try to find really big prime
factors), then it becomes practically impossible to solve the problem.
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The advantage. For cryptographic schemes, we are interested in quantifying the
ability of an adversary to win that game. We call this probability the advantage of
the adversary. We write Adv𝒢(𝒜) to denote the advantage of the adversary 𝒜 for
some security game 𝒢𝒜. The goal of all security proofs is to show that, for all possible
adversaries, the advantage is negligible under some common assumptions. A bound 𝜖
is negligible if 𝜖(𝜆) ≤ 1

𝑝(𝜆) , for all possible polynomials 𝑝(𝜆), and a sufficiently large 𝜆.

The security parameter. If the advantage of𝒜 is negligible for some cryptosystem,
then 𝜆 describes a lower bound for the security of said cryptosystem. This 𝜆, which
is a positive number, is called the security parameter. As it increases linearly, the
advantage of 𝒜 is expected to decrease (sub-)exponentially. The security parameter
is provided as an argument to security games, adversaries, and primitives (i.e., 𝒢𝒜(𝜆),
𝒜(𝜆), etc.), but for the sake of clarity it will be omitted.

Game-hopping proofs. The main strategy for arguing for the security of a scheme
is by use of a game-hopping proof. First, we assume that there exists a game (let’s call
this game 𝒢 0) wherein the adversary 𝒜 breaks the scheme. Then we make a small
tweak to the game, resulting in 𝒢 1. We keep doing this until we end up with the
game in which the adversary solves the cryptographic problem that was presumed to
be hard.

After each game hop from𝒢 𝑖 to𝒢 𝑖+1, the original adversary𝒜might not completely
apply to 𝒢 𝑖+1. 𝒜 might now lose for a fraction of instances of 𝒢 𝑖+1 where it would
have won in the case of 𝒢 𝑖. These exception cases, where 𝒜 wins a 𝒢 𝑖 instance, but
where𝒜 loses the same 𝒢 𝑖+1 instance, are called bad events. We bound the prevalence
of the bad events by bounding the security loss 𝜖𝑖 = |Pr[𝒢 𝑖

𝒜 = true]−Pr[𝒢 𝑖+1
𝒜 = true]|.

Call the last game (i.e., the “hard problem game”) 𝒢𝑘, and let us denote its adversary
(i.e., the adversary that solves the hard problem) ℬ. We can now compute the sum of
all 𝜖𝑖s to get a relation between the advantages of both adversaries:

Adv(𝒜) ≤ Adv(ℬ) + 𝜖0 + ⋯ + 𝜖𝑘−1 (2.1)

If the total security loss is negligible, this proof shows a useful security reduction
between 𝒢 0 and 𝒢 𝑘. Informally, it states that algorithm 𝒜’s ability to break the
cryptographic scheme 𝒢 0 is always less than or equal to the ability of the algorithm
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ℬ to break the cryptographic hard problem 𝒢 𝑘, plus some negligible bound. As we
assume that no PPT algorithm ℬ can ever exist, we also know that no PPT algorithm
𝒜 will ever exist.

Hybrid proofs. We do not know anything about the internal mechanics of 𝒜; as it
is a hypothetical black box. However, we can look at the inputs that the adversary is
provided. In a hybrid proof, we bound the statistical distance Δ(𝑋 ; 𝑌 ) of the inputs to
the adversary between two games. Then we use the property that

Δ (𝒜(𝑋 𝑖); 𝒜(𝑋 𝑖+1)) ≤ Δ (𝑋 𝑖; 𝑋 𝑖+1) (2.2)

which holds for any function 𝒜. Consequently, we have an upper bound for
Δ (𝒢 𝑖; 𝒢 𝑖+1), which is equal to |Pr [𝒢 𝑖

𝒜 = true] − Pr [𝒢 𝑖+1
𝒜 = true]| = 𝜖𝑖.

2.3.2 Signature schemes in theory

Definition 2.1 (Signature scheme). A signature scheme is a tuple of three efficient
algorithms Sig ∶= (KeyGen, Sign,Verify) following the format

sk, pk ← KeyGen(1𝜆)

𝜎 ← Sign(sk, 𝑀)

ok ← Verify(pk, 𝑀, 𝜎)

where the individual algorithms are described as follows.

Key generation (KeyGen). The probabilistic key generation algorithm KeyGen, that
takes the security parameter 1𝜆; outputs a keypair, i.e., a pair consisting of a secret key
(sk) and a public key (pk).

Signature generation (Sign). The signature generation algorithm Sign, which may
be probabilistic, takes a secret key sk and a message 𝑀 as input; outputs a signature 𝜎.

Verification (Verify). The deterministic signature verification algorithm Verify, which
takes a public key pk, a message 𝑀, and a signature 𝜎 as input; outputs true if the
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signature correctly authenticates that it was generated over 𝑀 using the secret key
corresponding to pk; and outputs false otherwise.

Definition 2.2 (Correctness). A signature scheme is correct if all valid signatures
generated by the Sign algorithm can be verified to be valid using the Verify algorithm,

i.e., for all 𝜆,𝑀: Pr[Verify(pk, 𝑀, Sign(sk, 𝑀)) = true ∣ (sk, pk)
$
← KeyGen(1𝜆)] = 1.

2.3.3 Security notions

Definition 2.3 (Unforgeability under no-message Attacks (UF-NMA)). A signa-
ture scheme Sig is unforgeable under no message attacks if for all PPT adversaries 𝒜 the
advantage AdvUF-NMA(𝒜) is negligible, with the game 𝒢UF-NMA

Sig,𝒜 (𝜆) defined as

Game 𝒢UF-NMA
Sig,𝒜 (𝜆):

1: (pk, sk)
$
← KeyGen(1𝜆)

2: (𝑀∗, 𝜎∗)
$
← 𝒜(pk)

3: return (Verify(pk, 𝑀∗, 𝜎∗) = true)

In all unforgeability models, the adversary wins when it is able to forge a signature
over the public key that was provided. In UF-NMA, the adversary is only provided
the public key of the scheme. That is, the adversary only gets access to the public
key, which is why it is also generally known as unforgeability under key-only attack
(UF-KO).

Definition 2.4 (Unforgeability under chosen-message attacks (UF-CMA)). A
signature scheme Sig is unforgeable under chosen message attacks if for all PPT ad-
versaries 𝒜 the advantage AdvUF-CMA(𝒜) is negligible, with the game 𝒢UF-CMA

Sig,𝒜 (𝜆)
defined as

Game 𝒢UF-CMA
Sig,𝒜 (𝜆):

1: 𝑄 ∶= {}
2: (pk, sk)

$
← KeyGen(1𝜆)

3: (𝑀∗, 𝜎∗)
$
← 𝒜𝒪(sk,⋅)(pk)

4: return (Verify(pk, 𝑀∗, 𝜎∗) = true and 𝑀∗ ∉ 𝑄)
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with a signing oracle 𝒪(sk, 𝑀) that is defined as

Signing oracle 𝒪(sk, 𝑀):

1: 𝑄 ∶= 𝑄 ∪ {𝑀}
2: 𝜎

$
← Sign(sk, 𝑀)

3: return 𝜎

Definition 2.4 defines the UF-CMA security model. In this security model, we
assume that the attacker has access to a signing oracle 𝒪. When the attacker queries
the oracle with a message, the oracle will give back a valid signature for that message.
The attacker can keep adaptively querying (a possibly large number of) signatures from
the oracle as part of their attack. The adversary wins (and the scheme is considered
broken) when the adversary can forge a signature with a non-negligible probability,
for any message, as long as they did not ask the oracle to sign that message as part of
the attack. This ensures that the adversary is not allowed to just query the oracle for
𝑀∗ and submit the resulting signature to the challenger; the attacker has to produce
a signature over a new message.

Definition 2.5 (Strong unforgeability under chosen-message attacks (SUF-
CMA)). A signature scheme Sig is strong unforgeable under chosen message attacks if
for all PPT adversaries 𝒜 the advantage AdvSUF-CMA(𝒜) is negligible, with the game
𝒢 SUF-CMA

Sig,𝒜 (𝜆) defined as

Game 𝒢 SUF-CMA
Sig,𝒜 (𝜆):

1: 𝑄 ∶= {}
2: (pk, sk)

$
← KeyGen(1𝜆)

3: (𝑀∗, 𝜎∗)
$
← 𝒜𝒪(sk,⋅)(pk)

4: return (Verify(pk, 𝑀∗, 𝜎∗) = true and (𝑀∗, 𝜎∗) ∉ 𝑄)

with a signing oracle 𝒪(sk, 𝑀) that is defined as

Signing oracle 𝒪(sk, 𝑀):

1: 𝜎
$
← Sign(sk, 𝑀)

2: 𝑄 ∶= 𝑄 ∪ {(𝑀, 𝜎)}
3: return 𝜎
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In the UF-CMA security model, the adversary wins when they can forge a signature
for any message that they did not input into the oracle as part of the attack. The
SUF-CMA is a stronger security model, which only requires that the adversary cannot
submit a signature that they received from the oracle [ADR02].

For example, consider the scenario in which the generated signatures are malleable:
When signatures are malleable, the adversary can query 𝜎 ← 𝒪(𝑀∗), and then use
𝜎 to find some 𝜎∗ which is also valid over 𝑀∗. In UF-CMA, the adversary does not
win the game, because 𝑀∗ was input into the signing oracle at some point. However,
in the SUF-CMA game, the adversary does win, because only 𝜎 was output from the
signing oracle before; 𝜎∗ is different from 𝜎, so submitting that to the challenger does
result in a win. If a signature scheme is SUF-CMA secure, then it is also UF-CMA
secure.

2.3.4 Signature schemes in practice

Section 2.3.2 describes how signatures are commonly viewed in cryptography. That
description is built for efficient reasoning about their security. However, from the
perspective of the engineer, it is sometimes more convenient to not reduce the primi-
tive to such an ideal form, as it omits many details that become relevant once you
start thinking about real-world aspects.

In practice, there is often a lot of “artistic freedom” and there are many tradeoffs
to be considered. After all, a crypto implementation can do anything as long as its
outputs correspond to the specification, and as long as it protects against side-channels
(see Section 2.6.1). This also applies to the signature scheme’s API.

For example, how do we provide the random number generator? After all, real ran-
domness does not exist out of nothing; the randomness has to come from somewhere.
We could provide the scheme’s functions with random seeds, or we could supply an
RNG function as one of the inputs. Another scenario in which the common API does
not fit is when we are signing or verifying a batch of many signatures in one go. Then
we will have to come up with an API that supports batched signing/verification. Or,
what if some of the inputs or outputs do not entirely fit into memory? In this case
we might want to design some kind of API where the input values are streamed in
(like in [HRS16] or [GHKK+21]); or we can delegate the compressing of 𝑀 to a more
powerful environment (i.e., implement online/offline signing [EGM96]).

21



2

2 Preliminaries

In crypto engineering, it is not only important to know the algorithm, but it is
also important to consider the environment (platform, use case, etc.) in which it will
be deployed; to utilize its strengths and know its weaknesses. Of all descriptions of
signatures schemes, we can then apply the one that suits the environment most.

2.4 Modular integer multiplication

Almost all asymmetric cryptographic schemes are in some way based on arithmetic
in ℤ𝑞. In the ideal case, 𝑞 would be a power of 2, because then the modular arithmetic
would be trivial to implement on all modern CPUs.

Unfortunately, the moduli used in many cryptographic schemes are not powers of
two; and, as such, we cannot use the CPU’s native integer multiplier as is for modular
multiplication. We overcome this complication by using modular-multiplication
algorithms.

These algorithms take some bounded inputs 𝑎, 𝑏 and a modulus 𝑞. They compute
𝑐 ≡ 𝑎 ⋅ 𝑏 (mod 𝑞), such that the range of 𝑐 is concretely bounded as well.

Modular-multiplication algorithms usually consist of two stages: first, a standard
multiplication operation is performed, and second, the result is reduced modulo 𝑞.
These two steps can be seen as separate operations, and the reduction step can be
used on its own for reducing values that have accumulated through operations other
than multiplication. However, for most of the implementations in this thesis, every
multiplication is followed by a modular reduction step. Therefore in this section, the
multiplication step and the reduction step will be presented as two parts of the same
algorithm.

Unsigned vs. signed representation. Over the wire and in storage, cryptographic
values (public keys, signatures, etc.) are encoded into opaque byte strings. In these
encodings, cryptographic values are represented in their standard representation,
which usually use unsigned values.

However, internally in cryptographic implementations, we are free to use any kind
of representation that fits our needs. Indeed, it is sometimes more efficient to opt for
using a signed representation instead of an unsigned representation, because unsigned
representations are less compatible with subtractions. Every time we compute a
subtraction 𝑐 ← 𝑎0 − 𝑎1 on unsigned values, we have to ensure that 𝑎0 is larger
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than or equal to 𝑎1 to prevent an integer overflow from happening. Often the most
efficient way to do this is to add a multiple of 𝑞 to 𝑎0 before subtracting, such that
the left operand is guaranteed to be greater than 𝑎1 before the subtraction occurs, i.e.,
𝑐 ← (𝑎0 + 𝑘𝑞) − 𝑎1. Apart from adding an extra addition to the code, this also widens
the bounds of the result, which leads to the need for more modular reductions modulo
𝑞. In signed operations, this overflow does not occur, and as such, no additional code
is needed to prevent them.

Dilithium’s 𝑞 is a Solinas prime [Sol11]. Although its structure has been used
to build specialized reductions in hardware ([ZZWY+21]), in software we usually
fall back to using general modular reduction algorithms. For this thesis, the two
main general modular multiplication methods are Barrett reduction [Bar87] and
Montgomery multiplication [Mon85]. Although these modular reduction methods
were initially published as algorithms for unsigned values, they have since been
adapted by others for use with signed values. Since all the implementations presented
in this thesis utilize a signed representation for their internal values, only the signed
versions of the modular-multiplication algorithms will be listed.

2.4.1 Barrett reduction

A concrete instantiation of the Barrett reduction algorithm is listed in Algorithm 2.6.
Barrett reduction is based on the following strategy:

0. (compute the unreduced multiplication of the operands 𝑎 and 𝑏);

1. approximate 𝑡 ← ⌊ 𝑎𝑏𝑞 ⌉;

2. output 𝑐 ← 𝑎𝑏 − 𝑡𝑞.

With this strategy, the output bounds are determined by the quality of the approxi-
mation: the lower the approximation error, the tighter the bounds of 𝑐. The algorithm
listed in Algorithm 2.6 uses the approximation where 𝑡 ← [𝑎𝑏 ⋅ (𝑞−1 mod± 2𝑛)]𝑛,
which only needs a single multiplication and an arithmetic shift to the right.

Correctness. Reduction methods are correct when, provided correct inputs, they al-
ways produce correct outputs. In other words, does the reduction algorithm output
𝑐 ≡ 𝑎𝑏 (mod 𝑞) for all valid pairs 𝑎, 𝑏? For Barrett reduction, this is easy to see: 𝑡𝑞 is a
multiple of 𝑞, and as such, 𝑐 = 𝑎𝑏 − 𝑡𝑞 ≡ 𝑎𝑏 (mod 𝑞).
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Algorithm 2.6: Signed multiplication with Barrett reduction of 𝑐 ← 𝑎 ⋅ 𝑏 (mod 𝑞)
input: 𝑎, 𝑏, 𝑞, 𝑛 with 𝑞, 2𝑛 pairwise coprime, 𝑞 < 2𝑛 and −2𝑛−1𝑞 ≤ 𝑎𝑏 < 2𝑛−1𝑞
output: 𝑐 ≡ 𝑎𝑏 (mod 𝑞) and −𝑞 < 𝑐 < 𝑞
let: 𝑅 = ⌊ 2

𝑛

𝑞 ⌉

1: 𝑇1 ← 𝑎 ⋅ 𝑏 ▷ 𝑛-bit multiply
2: 𝑡 ← [𝑅 ⋅ 𝑇1]

𝑛 ▷ 2𝑛-bit multiply
3: 𝑇2 ← 𝑡 ⋅ 𝑞 ▷ 𝑛-bit multiply
4: 𝑐 ← 𝑇1 − 𝑇2
5: return 𝑐

Usefulness. Aside from being correct, a reduction algorithm also has to be useful. For
the algorithm to be useful, we desire for the bounds of its outputs to be reasonably
tight. We can determine the algorithm’s usefulness by examining the bounds of 𝑐.

The bounds of 𝑎𝑏 are [−2𝑛−1𝑞, 2𝑛−1𝑞), as required by the algorithm specification.
To compute the output bounds, we fill in the assumed bounds for 𝑎𝑏 and then we
simplify from there:

−2𝑛−1𝑞 − [−2𝑛−1𝑞𝑅]𝑛𝑞 ≤ 𝑐 < 2𝑛−1𝑞 − [2𝑛−1𝑞𝑅]𝑛𝑞

−𝑞 (2𝑛−1 + [−2𝑛−1𝑞𝑅]𝑛) ≤ 𝑐 < 𝑞 (2𝑛−1 + [−2𝑛−1𝑞𝑅]𝑛)

−𝑞 (2𝑛−1 + [−2𝑛−1𝑞 (2
𝑛

𝑞
− 1
2
)]

𝑛
) ≤ 𝑐 < 𝑞 (2𝑛−1 + [−2𝑛−1𝑞 (2

𝑛

𝑞
− 1
2
)]

𝑛
)

−𝑞 (2𝑛−1 + [−2𝑛−1 (2𝑛 −
𝑞
2
)]

𝑛
) ≤ 𝑐 < 𝑞 (2𝑛−1 + [−2𝑛−1 (2𝑛 −

𝑞
2
)]

𝑛
)

−𝑞 (��2𝑛−1 −��2𝑛−1 + [
𝑞
2
]
𝑛
) ≤ 𝑐 < 𝑞 (��2𝑛−1 −��2𝑛−1 + [

𝑞
2
]
𝑛
)

−𝑞[
𝑞
2
]
𝑛
≤ 𝑐 < 𝑞[

𝑞
2
]
𝑛

−𝑞 ≤ 𝑐 < 𝑞

This shows that the outputs of the Barrett reduction algorithm are always between
−𝑞 and 𝑞, which makes the reduction algorithm useful.

24



2

2.4 Modular integer multiplication

Cost. Barrett reduction uses three multiply operations. Two of the multiply op-
erations are on a single word of 𝑛 bits, which is usually a cheap operation on most
platforms. However, one of these operations (Algorithm 2.6, line 2) is a 2𝑛-bit multi-
plication, which might be considerably more expensive.

2.4.2 Montgomery multiplication

Another modular multiplication method is Montgomery multiplication, invented by
Montgomery in 1985 [Mon85]. Originally it was proposed as an algorithm for unsigned
integer multiplication. In 2018, Seiler proposed the signed variant [Sei18] that is listed
in Algorithm 2.7.

Algorithm 2.7: Signed Montgomery modular multiplication of 𝑐 ← 𝑎 ⋅ 𝑏 (mod 𝑞)
input: 𝑎, 𝑏, 𝑞, 𝑛 with 𝑞, 2𝑛 pairwise coprime, and −2𝑛−1𝑞 ≤ 𝑎𝑏 < 2𝑛−1𝑞
output: 𝑐 ≡ 2−𝑛𝑎𝑏 (mod 𝑞) and −𝑞 < 𝑐 < 𝑞
let: 𝑅 = 𝑞−1 mod ±2𝑛

1: 𝑇1 ← 𝑎 ⋅ 𝑏 ▷ 𝑛-bit multiply
2: 𝑡 ← [[𝑇1]𝑛 ⋅ 𝑅]𝑛 ▷ 𝑛-bit multiply
3: 𝑇2 ← 𝑡 ⋅ 𝑞 ▷ 𝑛-bit multiply
4: 𝑐 ← [𝑇1 − 𝑇2]

𝑛

5: return 𝑐

Montgomery reduction takes a different perspective from Barrett reduction, where
instead of computing 𝑐 ≡ 𝑎𝑏 we compute 𝑐 ≡ 2−𝑛𝑎𝑏. At first thought, you would think
that this eliminates the whole purpose of the reduction method, as the final result
is off by a factor 2−𝑛. However, this does not matter much, because the 2−𝑛 factor is
easily eliminated by Montgomery-multiplying the result with 22𝑛 (mod 𝑞), resulting
in (2−𝑛22𝑛)(2−𝑛𝑎𝑏) ≡ 𝑎𝑏. On the other side, this extra factor 2−𝑛 adds a lot of freedom
which can be used to construct a more efficient reduction algorithm.

Instead of approximating 𝑡 ← ⌊𝑎𝑏/𝑞⌉, the Montgomery reduction algorithm approx-
imates a small factor 𝑡 such that 𝑎𝑏 − 𝑡𝑞 divides 2𝑛. Then the result is computed as
𝑐 ← (𝑎𝑏 − 𝑡𝑞)/2𝑛, which is where the factor 2−𝑛 appears. The formula for 𝑡 is described
by

𝑡 = [[𝑎𝑏]𝑛 ⋅ 𝑅]𝑛

where 𝑅 ≡ 𝑞−1 (mod 2𝑛).
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Correctness. For the algorithm to be correct it must hold that 𝑡𝑞 ≡ 0 (mod 𝑞) (trivial),
and it must be that 𝑎𝑏 − 𝑡𝑞 is divisible by 2𝑛, because otherwise the division would be
undefined (or it would add rounding error, depending on your definitions). Fortunately,
this follows directly from the value we chose for 𝑅, as 𝑅 was chosen such that 𝑅 ⋅ 𝑞 ≡ 1
(mod 2𝑛):

𝑎𝑏 − 𝑡𝑞 = 𝑎𝑏 − [[𝑎𝑏]𝑛 ⋅ 𝑅]𝑛𝑞

= 𝑎𝑏 − [[𝑎𝑏]𝑛 ⋅ 𝑅𝑞]𝑛
= 𝑎𝑏 − [[𝑎𝑏]𝑛 ⋅ (2𝑛 + 1)]𝑛
= 𝑎𝑏 − [𝑎𝑏]𝑛 which is divisible by 2𝑛.

Usefulness. The bounds of 𝑎𝑏 are [−2𝑛−1𝑞, 2𝑛−1𝑞), as is specified as a requirement of
the algorithm inputs. The bounds of 𝑡𝑞 are also [−2𝑛−1𝑞, 2𝑛−1𝑞), because 𝑡 is bounded
by −2𝑛−1 and 2𝑛−1 through the [_]𝑛 bit selection operation. Therefore, after the last
division by 2𝑛, 𝑐 is bounded by:

−

𝑎𝑏 bound
⏞2𝑛−1𝑞 +

𝑡𝑞 bound
⏞2𝑛−1𝑞

2𝑛
≤ 𝑐 <

𝑎𝑏 bound
⏞2𝑛−1𝑞 +

𝑡𝑞 bound
⏞2𝑛−1𝑞

2𝑛

−
𝑞 + 𝑞
2

≤ 𝑐 <
𝑞 + 𝑞
2

−𝑞 ≤ 𝑐 < 𝑞

Just like the outputs of the Barrett reduction algorithm, the Montgomery reduction
algorithm’s outputs are always between −𝑞 and 𝑞.

Cost. From both algorithm listings, you can see that, in terms of operation count, the
primary difference between Barrett and Montgomery modular multiplication is that
Barrett reduction uses one 2𝑛-bit multiplication aside from two 𝑛-bit multiplications,
whereas Montgomery only uses three 𝑛-bit multiplications. The actual difference in
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performance between both algorithms depends on whether the platform provides
native 2𝑛-bit multiplications. If that is the case, then both algorithms are roughly
equally fast. However when the platform only supports 𝑛-bit multiplications, then
the 2𝑛-bit multiplication will have to be implemented using four 𝑛-bit multiplications.
In that case, Montgomery reduction is undeniably faster.

2.4.3 Montgomery multiplication with precomputed constants

Often when we are computing modular multiplications, one of the operands is known
at compile-time, i.e., it is a constant. In this case, we can erase the extra 2−𝑛 factor
by multiplying the precomputed operand with 2𝑛 before using it as an input to the
multiplication algorithm. When we do this we do not have to recover 𝑐 from the
Montgomery domain, because 𝑐 ≡ 2−𝑛(2𝑛𝑎𝑏) ≡ 𝑎𝑏. This optimized version of the
Montgomery multiplication algorithm is listed in Algorithm 2.8.

Algorithm 2.8: Signed Montgomery modular multiplication of 𝑐 ← 𝑎 ⋅ 𝑏 (mod 𝑞)
where 𝑎 is a constant
input: 𝑎, 𝑏, 𝑞, 𝑛 with −2𝑛−1𝑞 ≤ 𝑎𝑏 < 2𝑛−1𝑞
output: 𝑐 ≡ 𝑎𝑏 (mod 𝑞) and −𝑞 < 𝑐 < 𝑞
let: 𝑅 = 𝑞−1 mod ±2𝑛 and 𝑎′ = 2𝑛𝑎 mod ±𝑞

1: 𝑡 ← [𝑎′ ⋅ 𝑏]𝑛 ▷ 𝑛-bit multiply
2: 𝑇2 ← 𝑡 ⋅ 𝑞 ▷ 𝑛-bit multiply
3: 𝑐 ← [𝑇1 − 𝑇2]

𝑛

4: return 𝑐

2.5 Cortex-M3 and Cortex-M4

The implementation work in this thesis focuses heavily on the Arm Cortex-M3
[ARM10a; ARM10b] and Arm Cortex-M4 [ARM11; ARM20] microarchitectures. The
variety of embedded computing architectures is enormous, but implementation char-
acteristics are hard to compare across different kinds of architectures, as each has
their own particular strengths and weaknesses. In order to facilitate apples-to-apples
comparisons of post-quantum crypto implementations, NIST requested the evaluation
of schemes (see Section 1.2) to be narrowed down to as few platforms as possible.
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They chose Cortex-M4, which is a reasonable platform to stick to because it is often
included in chips that are considered constrained, but not too constrained as to imme-
diately disqualify all of the “bigger” candidates.2 However, in the embedded industry,
Cortex-M4 is often still considered a relatively powerful architecture. Therefore, we
also consider Cortex-M3, a somewhat smaller (and cheaper) alternative to Cortex-M4.

2.5.1 The Armv7E-M Thumb architecture

Arm Cortex-M4 implements the Armv7E-M Thumb instruction set architecture (ISA),
and Cortex-M3 implements the Armv7-M Thumb ISA. The ISAs are very similar,
with the Armv7E-M architecture being slightly more powerful than the Armv7-M
architecture. Both ISAs are in-order, and feature a 3-stage (fetch-decode-execute)
pipeline. Each ISA features 16 32-bit registers (r0–r15), of which 2 are reserved for the
program counter (r15) and the stack pointer (r13), leaving 14 usable general-purpose
registers.

32-bit to 64-bit multiplication. Multiplications are the core operation of crypto-
graphic implementations. Aside from instructions for 32-bit to 32-bit multiplication
(mul, mla, mls), both the ISAs support instructions for native 32-bit to 64-bit multipli-
cations (umull, smull, umlal, smlal). On Cortex-M4, all of these instructions execute
in a single cycle, making them very suitable for crypto implementations. However
on Cortex-M3, these “big” instructions have an execution time that is dependent on
the instruction operands [Gro15], varying from 3 to 7 cycles per instruction. This
makes them unusable for computing on secret data because that kind of use would be
vulnerable to timing side-channel attacks [GOPT09] (see Section 2.6.1). Therefore on
Cortex-M3, we can only use these instructions when working with public values.

SIMD instructions. On top of the powerful 32-bit to 64-bit multiplication instruc-
tions, the ARMv7E-M ISA provides SIMD instructions like smlad or uadd16. These
have been shown to achieve significant speedups for NTT-based polynomial multipli-
cation [ABCG20; BKS19] and Toom–Cook-based polynomial multiplication [BKV20;
KBSV18; KRS19] on the Cortex-M4.

2This happened in the email conversation with the subject “On Recommended Hardware” on the pqc-
forum mailing list of 5–6 February 2019.
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Inline shifts. A neat feature that the Armv7 architectures implement is that Thumb
data-processing instructions can inline shift or rotate their second operand before use.
This feature is often referred to as the barrel shifter.3 For example, the instruction
add r0, r0, r1, lsl #2 shifts the contents of r1 two positions to the left, before
adding them to r0. The shift operation adds no overhead; all instructions use the
same amount of cycles whether the shifter was used or not.

Floating-point unit. The Cortex-M4 architecture features an optional floating-
point unit (FPU). The presence of an FPU is often denoted by a suffix F in the archi-
tecture name (e.g., Cortex-M4F). Even if our code does not use any floating-point
operations, the FPU can still be useful, because it provides 32 additional registers
(s0–s31). One cannot use these registers directly for general-purpose data processing.
However, moving between general-purpose registers and FPU registers is faster than
accessing memory (1 cycle instead of 2 cycles). This is why, in Chapter 5, we use the
FPU registers to store some of our local variables.

2.5.2 STM32F4 Discovery

As mentioned, the Cortex-M3 and Cortex-M4 architectures are implemented on a
plethora of chips and development boards. At the start of the NIST competition, the
pqm4 [PQM4] project ported Cortex-M4 implementations of all the NIST competition
candidates to the STM32F4 Discovery board. Because of this, the STM32F4 Discovery
board [STM20b] has evolved to be the de facto development board for the evaluation
of post-quantum crypto schemes on Cortex-M4. As such, it is also the main board
used for the evaluations in this thesis. The board features an STM32F407VGT6
microcontroller [STM20a], which has 1 MB of flash space, and 192 KiB of SRAM (of
which 64 KiB is faster “core-coupled” memory). Its core runs with a maximum clock
speed of 168 MHz. The chip includes the optional Cortex-M4 FPU and includes a
hardware true random number generator (TRNG). It does not feature any kind of
acceleration for cryptographic primitives.

3It is, presumably, implemented using a barrel shifter.
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2.5.3 Arduino Due

Aside from Cortex-M4 evaluations, we also evaluate Dilithium’s performance on
Cortex-M3. For Cortex-M3 we use the Arduino Due development board. This board
is based on the ATSAM3X8E IC [Atmel15] which contains a Cortex-M3 core. The
chip comes with 512 KiB of flash space, and 96 KiB of homogeneous SRAM; and its
core’s maximum clock frequency is 84 MHz. Just like the STM32F4 chips, it does not
feature any acceleration for cryptographic primitives. It does, however, also feature a
hardware true random number generator.

2.6 Software & measurements

2.6.1 Side-channel resistance

Our implementations are only considering timing side-channels [Koc96], i.e., we
provide constant-time code that avoids leaking secret data through the execution time
of operations on the platform. Formally, constant-timeness is based on the notion
of computational probabilistic non-interference [BP02]. In practice, whether code is
constant-time is highly dependent on both the platform and the leakage model. In
the case of this thesis, all code that is described as constant-time is implemented
according to the following rules:

1. All values in the algorithm’s execution are public or secret.

2. For all atomic operations, the output is secret if any of the inputs is secret, and
public if all of the inputs are public.

3. Values that are secret are not used as conditions in conditional branching
operations.

4. Values that are secret are not used as address operands for operations that
interact with memory.

5. Values that are secret are not used as operands for operations from which it is
known that their execution time depends on that operand.

6. The Declassify(𝑠) operation takes a secret variable 𝑠 and designates it as public.
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7. Variables are only declassified when they are of no use to an attacker. In other
words, for all ℬ adversaries that get all public values as input, and 𝒜 is the
adversary that breaks the scheme (i.e., that of Definition 2.3, 2.4, or 2.5), values
are only declassified when Adv(ℬ) ≤ Adv(𝒜) remains satisfied.

For certain use cases onemaywant to consider to also protect against more powerful
attacks like power analysis attacks, e.g., using masking. There exists work in the
literature that masks modified versions of Dilithium [MGTF19; PPRS23], and there
are (at the time of writing) only few masked Dilithium implementation that conform
to the Dilithium specification [ABCH+23; CGTZ23]. More research is still needed to
determine the best ways of masking Dilithium in implementations. However, that
topic is researched in parallel to our research, and masking techniques have been left
outside of the scope of this thesis.

2.6.2 Benchmarks

Cortex-M4. Our Cortex-M4 benchmarking setup is based on pqm4 [PQM4]. As
such, we benchmark all our Cortex-M4 implementations on the STM32F407 Discov-
ery board. It was clocked at 24 MHz to eliminate flash wait states when fetching
instructions or data from flash. For benchmarking the algorithm latency, we used the
SysTick counter clocked from the same clock as the core.

Cortex-M3. The Cortex-M3 speed measurements were done on the Arduino Due
board which uses the ATSAM3X8E microcontroller. The ATSAM chip was clocked
at 16 MHz, which results in a flash access time with zero wait-states. The algorithm
latencies were measured using the internal cycle counter (DWT->CYCCNT).

Memory usage. On both architectures, the memory usage was measured by filling
the stack memory with dummy values, then executing the algorithm, and afterward
measuring the amount of dummy-value bytes that were overwritten during the
execution (no static or heap memory was used). By convention, in the memory
measurements, space reserved for input and output values (i.e., buffers for keys,
messages, and signatures) is not counted.
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3.1 Lattice-based cryptography

As we saw in Section 2.3.1, all cryptographic constructions are based on some hard
mathematical problem. The Dilithium signature scheme is based on the MLWE
and MSIS hard problems in lattice cryptography. Both problems are “hard”, i.e., we
presume that the advantage of an adversary solving one of these problems is very
small. Their definitions are provided by the Dilithium specification [DKLL+20], but
for completeness I will provide them here as well.

Definition 3.1 (AdvMLWE
𝑘,ℓ,𝐷 ). For integers 𝑘 and ℓ, and a probability distribution 𝐷 ∶

𝑅𝑞 → [0, 1], the advantage of an adversary 𝒜 of solving the MLWE problem over 𝑅𝑞 is

AdvMLWE
𝑘,ℓ,𝐷 (𝒜) ∶= | Pr [𝑏 = true ∣ A

$
← 𝑅𝑘×ℓ𝑞 ; t

$
← 𝑅𝑘𝑞; 𝑏 ← 𝒜(A, t)] −

Pr [𝑏 = true ∣ A
$
← 𝑅𝑘×ℓ𝑞 ; s1 ← 𝐷ℓ; s2 ← 𝐷𝑘; 𝑏 ← 𝒜(A, As1 + s2)] |.

(3.1)

Definition 3.1 describes the Decisional Module Learning With Errors (MLWE) prob-
lem, based on the LWE problem proposed by Regev in 2005 [Reg05]. It declares that
if some adversary 𝒜 exists which is able to distinguish between MLWE pairs (A, t) of
the form

A
$
← 𝑅𝑘×ℓ𝑞 , t ← As1 + s2,

with s1 and s2 sampled from the distribution 𝐷; and random pairs (A, t) of the form

A
$
← 𝑅𝑘×ℓ𝑞 , t

$
← 𝑅𝑘𝑞,
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then its advantage is equal to AdvMLWE
𝑘,ℓ,𝐷 (𝒜).

Informally speaking, we assume that both kinds of pairs “look the same”. From
just A and t alone, we presume no adversary can make out which ts were generated
using the t ← As1 + s2 formula, and which ones are really random. If (contrary to
our beliefs), there exists some 𝒜 that can solve the problem, then its advantage is
described by AdvMLWE

𝑘,ℓ,𝐷 (𝒜).

Definition 3.2 (AdvMSIS
𝑘,ℓ,𝛾 ). The advantage of an adversary 𝒜 of solving the MSIS

problem over 𝑅𝑞 is

AdvMSIS
𝑘,ℓ,𝛾 (𝒜) ∶= Pr [[ I | A ] ⋅ y = 0 and 0 < ‖y‖∞ ≤ 𝛾 ∣ A

$
← 𝑅𝑘×ℓ𝑞 ; y ← 𝒜(A)] . (3.2)

Definition 3.2 describes the Module Shortest Integer Solution (MSIS) problem, based
on the SIS problem from the Ajtai paper of 1996 [Ajt96]. It defines the advantage of
an adversary 𝒜 that can find some non-zero vector y which

• satisfies [ I | A ] ⋅ y = 0; and

• is small, i.e., ‖y‖∞ ≤ 𝛾.

The Dilithium specification also describes the SelfTargetMSIS problem. SelfTarget-
MSIS is particularly relevant for security analysis of Dilithium in the quantum random
oracle model (QROM) [BDFL+11]. However, it is not relevant in the classical setting,
because, in the regular random oracle model (ROM) [BR93], SelfTargetMSIS can be
reduced to MSIS. We will not cover the QROM security of Dilithium, and as such the
SelfTargetMSIS problem is outside the scope of this thesis.

3.2 Dilithium simplified

The MLWE problem can be used to construct cryptographic lattice signatures [BG14;
GPV08; Lyu12]. We will provide some intuition on how the confidentiality of the
secret key and signature soundness follows from MLWE and MSIS. Note that this
section does not attempt to prove the security and soundness of Dilithium. Multiple
papers have been dedicated to the security analysis of the scheme (e.g., [BBDD+23;
DFPS23; KLS18; LS15; Lyu09; Lyu12]), and a complete separate book could be written
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about it. However, I will do my best to provide a high-level overview of the scheme’s
security, and to refer to the relevant literature when applicable.

Before diving into the full Dilithium scheme, let us first look at the simplified
version that I have listed in Algorithm 3.3. It follows all of the same principles, but it
leaves out the details that are irrelevant for security.

In this section, all parameters (𝑞, 𝜂, 𝛾1, 𝛾2, 𝛽, etc.) will be left undefined. I recognize
that this leads to a somewhat abstract or even nebulous description of the scheme.
However, their definitions are not yet needed at this point. Just know that they are
scalar constants, and their concrete values will be listed in Section 3.3.3.

Algorithm 3.3: Simplified version of Dilithium.

1: function KeyGen
2: s1 ← 𝑆ℓ𝜂
3: s2 ← 𝑆𝑘𝜂
4: A

$
← 𝑅𝑘×ℓ𝑞

5: t ∶= As1 + s2
6: return sk ∶= (A, s1, s2), pk ∶= (A, t)

7: function Sign((A, s1, s2) ∶= sk, 𝑀)

8: y
$
← 𝑆ℓ𝛾1−1

9: w1 ∶= HighBits(Ay, 2𝛾2)
10: 𝑐 ∶= H(𝑀,w1)
11: z ∶= y + 𝑐s1
12: r0 ∶= LowBits(Ay − 𝑐s2, 2𝛾2)
13: if ‖z‖∞ ≥ 𝛾1 − 𝛽 then ▷ z-check
14: return ⊥
15: if ‖r0‖∞ ≥ 𝛾2 − 𝛽 then ▷ r0-check
16: return ⊥
17: return 𝜎 ∶= (𝑐, z)

18: function Verify((A, t) ∶= pk, (𝑐, z) ∶= 𝜎,𝑀)
19: w′

1 ∶= HighBits(Az − 𝑐t, 2𝛾2)
20: return ⟦𝑐 = H(𝑀 ‖ w′

1)⟧ and ⟦‖z‖∞ < 𝛾1 − 𝛽⟧
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3.2.1 KeyGen

The key generation routine (KeyGen) generates a uniformly distributed 𝑘 × ℓ public
matrix A with elements in 𝑅𝑞 = ℤ𝑞[𝑋]/[𝑋 𝑛 + 1]. It also generates two secret vectors

s1
$
← 𝑆ℓ𝜂, s2

$
← 𝑆𝑘𝜂 where 𝑆𝜂 is the set of polynomials in 𝑅 with coefficients in {−𝜂, … , 𝜂}.

We define sk ∶= (A, s1, s2) as the secret key, and pk ∶= (A, t) is the generated public
key. A is included as part of the secret key, because it will be necessary in the
generation of signatures (Section 3.2.2). However, only s1 and s2 need to remain
secret.

We can intuitively see how the secrecy of s1 and s2 is provided by the MLWE
assumption: if the adversary is provided an oracle that, given A and t, provides
information about s1 and s2, then they can use that to solve instances of the MLWE
problem.

3.2.2 Sign

In the signature generation algorithm, the HighBits routine is first used. It is defined
as follows.

Definition 3.4 (HighBits, LowBits). HighBits and LowBits uniquely decompose a
vector x such that

𝛼 ⋅ HighBits(x, 𝛼) + LowBits(x, 𝛼) = x and ‖LowBits(x, 2𝛼)‖∞ < 𝛼. (3.3)

Using the HighBits function, we compute the signature generation algorithm
in multiple stages. First, the signer samples a random nonce (or mask) y with all
coefficients smaller than 𝛾1, and from it computes the commitment w1 ∶= HighBits(
Ay, 2𝛾2). Then the commitment is, after concatenation with the message, input into a
random oracle H, which outputs a challenge polynomial 𝑐. The signer then computes
the response z ∶= y + 𝑐s1. After the response is computed, the signer will do two
checks that are necessary to ensure that the scheme is secure.

In the z-check, the signer checks that ‖z‖∞ is smaller than 𝛾1 − 𝛽, where 𝛽 is chosen
such that ‖𝑐s1‖∞ ≤ 𝛽. This check ensures that, when output, z does not leak any
information about s1. In the r0-check, the signer will check that HighBits(Ay, 2𝛾2) =
HighBits(Ay − 𝑐s2, 2𝛾2), and that r0 does not leak any information about s2. This
check also ensures that the commitment w1 will be recoverable from z during the

36



3

3.2 Dilithium simplified

signature verification. If any of these checks fail, the signature generation is aborted.
After all these steps are done, the algorithm outputs the signature 𝜎 ∶= (𝑐, z).

3.2.3 Verify

To verify 𝜎, the verifier first recovers the commitment by computingw′
1 ∶= HighBits(

Az− 𝑐t, 2𝛾2). Then the verifier can use w′
1 to compute 𝑐′ ∶= H(𝜇 ‖w′

1). The first check
in the verification ensures that 𝑐′ = 𝑐. The second check ensures that z is small, which
is required because the MSIS assumption only holds if z is small (see Definition 3.2).

Correctness. For the correctness of the first check in the signature verification, we
first show that w′

1 = HighBits(Ay − 𝑐s2, 2𝛾2):

w′
1 ∶= HighBits(Az − 𝑐t, 2𝛾2)

= HighBits(A(y + 𝑐s1) − 𝑐(As1 + s2), 2𝛾2)

= HighBits(Ay + A𝑐s1 − 𝑐As1 − 𝑐s2, 2𝛾2)

= HighBits(Ay − 𝑐s2, 2𝛾2) =∶ r1

To show that r1 = w1, consider that r1 ≠ w1: if r1 ≠ w1, this means that the
subtraction of 𝑐s2 from Ay has lead to a “carry” appearing in HighBits(Ay − 𝑐s2, 2𝛾2).
When this carry appears, the corresponding coefficient (call it 𝑥) in LowBits(Ay −
𝑐s2, 2𝛾2) is “close to overflow”, i.e., |𝑥 | ≥ 𝛾2 − 𝛽. However, it was ensured by the
r0-check this is not that case, and as such r1 must be equal to w1. Then, it follows
that H(𝑀 ‖ w′

1) = H(𝑀 ‖ w1) = 𝑐.
The correctness of the second check in the signature verification follows directly

from the fact that all candidate signatures with ‖z‖∞ ≥ 𝛾1 − 𝛽 were rejected during
the signing algorithm.

3.2.4 Security

As already mentioned, the security of Dilithium is complex and I will try to not
replicate the complete proof in this chapter. Besides, at the time of writing, some
discoveries are still quite recent [BBDD+23; DFPS23], which have impacted the secu-
rity proof of Dilithium. This section contains an intuitive impression of the security
analysis of Dilithium (i.e., not a complete one).
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Canonical identification schemes (ID). The Dilithium security argument con-
sists of multiple layers. At its core is a common canonical identification scheme
(ID) [AABN02; GMR85]. ID schemes consist of three steps: First, the prover (which
holds the secret key) produces and sends a commitment to the verifier (which, in the
case of Dilithium, is the valuew1). After receipt of the commitment, the verifier sends
a random challenge back to the prover (𝑐). Finally, the prover computes a response
(z) from the challenge. If z satisfies the checks described in Section 3.2.2, the prover
sends it to the verifier z; and otherwise it aborts. Using the prover’s public key, the
verifier uses the complete transcript (w1, 𝑐, z) to decide if the proof is accepted.

Fiat–Shamir-with-aborts (FSwA) and the random oracle model ROM. The
identification scheme (and its security proof) is transformed from the interactive set-
ting to a non-interactive signature scheme using the Fiat–Shamir-with-aborts (FSwA)
transform [Lyu09]. FSwA is based on the Fiat–Shamir (FS) transform [AABN02; FS87],
which replaces the generation of 𝑐 by the verifier with the computation 𝑐 ∶= H(𝑀 ‖w1),
where H is a hash function modelled as a random oracle [BR93]. The difference be-
tween the FS transform and the FSwA transform is that the FSwA transform deals
with the aborting nature of the underlying identification scheme. The FSwA trans-
form achieves this by wrapping the aborting scheme in a rejection-sampling loop,
essentially retrying the signature generation algorithm until a good (i.e., non-leaking)
signature is found. For Fiat–Shamir-based schemes to be secure in the ROM, they
need to meet two core security properties1: special soundness, and honest verifier
zero-knowledgeness.

Special soundness. The special soundness property is the property that provides un-
forgeability under no-message-attack UF-NMA. Special soundness is usually demon-
strated using the forking lemma [PS00]. In the Dilithium forking lemma, we first
assume that the MLWE problem (Definition 3.1) is hard. The hardness of MLWE im-
plies that all public keys (A, t) are cannot be distinguished from uniformly distributed
keys by the adversary. The forking lemma now uses the reprogrammability ability of
the random oracle to show that if we have a signing adversary 𝒜H that takes only
public data as input, then we can construct a reduction ℬ𝒜H

that can generate two
signatures (w1, 𝑐, z) and (w1, 𝑐′, z′), with 𝑐 ≠ 𝑐′. We derive solutions to the MSIS

1Apart from correctness (see Section 3.2.3), and an adequate min entropy of the commitment.
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problem from the values z − z′ and 𝑐 − 𝑐′. Because MSIS was assumed to be hard to
solve, this means that the scheme is UF-NMA.

Concretely, where ℬ, 𝒞 and 𝒟 are adversaries in each applicable game, the follow-
ing relation holds between the adversaries’ advantages:

AdvUF-NMA
SimplifiedDilithium(ℬ) ≤ AdvMLWE

𝑘,ℓ,𝑆𝜂 (𝒞 ) + AdvMSIS
𝑘,ℓ+1,𝜁(𝒟)

where 𝜁 ∶= max {𝛾1 − 𝛽, 2𝛾2 + 1}.

Honest verifier zero-knowledgeness. Honest verifier zero-knowledgeness (HVZK)
indicates that all signatures produced by the scheme are statistically independent of
the secret key. This property is important because otherwise, each signature would
provide the attacker with some information about the secret key.2 In HVZK schemes,
adversaries that are provided a signing oracle that knows sk have no advantage over
adversaries that are provided a signing oracle that only takes public information
as input. And because there is no advantage, these two scenarios (i.e., games) are
equivalent. In this way, HVZK allows a security reduction from UF-CMA to UF-NMA.
I.e., if a Fiat–Shamir based scheme is shown to be UF-NMA secure and HVZK, then it
is also UF-CMA secure.

Concretely, where 𝒜 and ℬ are adversaries against the applicable games, and 𝜖 is
negligible, if the scheme is zero-knowledge, then

AdvUF-CMA
SimplifiedDilithium(𝒜) ≤ AdvUF-NMA

SimplifiedDilithium(ℬ) + 𝜖

HVZK is usually demonstrated using a simulator 𝒮. This simulator is a subroutine
that generates simulated signatures that are statistically independent of real signatures
in the ROM. The Dilithium simulator is listed in Algorithm 3.5.

The simulated signatures are statistically independent of the “transcript” signatures
(output by a signing oracle). Therefore, we can swap out the signing oracle for the
simulator in the security game. Because of the ROM, the signature distributions are
not perfectly equal, so a security loss is incurred.3

2That scenario would be workable, but then we would have to either ensure that the secret key is not used
after too much information has leaked (like in [BDH11]), or we would have to ensure that (for each
signature) the amount of information that is leaked about the secret key is limited (e.g., in [BHHL+15]).

3See [BBDD+23, Section 5] for concrete values.
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Algorithm 3.5: Simulator for Dilithium signatures.

1: function 𝒮H((A, t) ∶= pk, 𝑀)
2: loop
3: (𝑐, z)

$
← 𝐵𝜏 × 𝑆ℓ𝛾1−𝛽 ▷ 𝐵𝜏 × 𝑆ℓ𝛾1−𝛽 is the set of all challenges and responses

4: r1 ∶= HighBits(Az − 𝑐t, 2𝛾2)
5: r0 ∶= LowBits(Az − 𝑐t, 2𝛾2)
6: if ‖r0‖∞ ≥ 𝛾2 − 𝛽 then ▷ r0-check
7: continue
8: H(r1 ‖ 𝑀) ∶= 𝑐
9: return 𝜎 ′ ∶= (𝑐, z)

Strongness. At this point, the scheme isUF-CMA secure. However, in the Dilithium
specification [LDKL+20, Section 6.2.2], a short proof is included that shows that
Dilithium is SUF-CMA by (again) reducing the security to the MSIS assumption.

SUF-CMAUF-CMAUF-NMA∅
MLWE
MSIS
ROM

special soundness
(forking)

HVZK
(simulation)

Figure 3.1: Structure of the Dilithium security proof.

Recap. Let us briefly recap the contents of this section. The structure of Dilithium
is based on canonical identification schemes. Using the Fiat–Shamir with aborts
heuristic, the scheme is transformed into a non-interactive signature scheme. The
security reduction of Dilithium consists of three steps (see Figure 3.1): Special sound-
ness is used to show UF-NMA security in the ROM, provided by the MLWE and MSIS
assumptions. Honest verifier zero-knowledgeness is used to show that (in the ROM)
the UF-NMA scheme is UF-CMA secure. Lastly, the (already assumed) hardness of
the MSIS assumption makes Dilithium SUF-CMA secure.

Throughout the security proof, a number of security losses are incurred, which are
all negligible in the security parameter. The concrete security loss of the complete
scheme has recently been reanalyzed and is summarized in [BBDD+23, Theorem 2].
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3.3 Dilithium

The previous section described a simplified version of Dilithium. However, for effi-
ciency reasons, the real Dilithium scheme is a bit more complex. In Algorithm 3.17
you will find the main algorithm listing, while the running text contains the additional
functions and collections that are used in the scheme. In this section, we cover the
version of Dilithium that was submitted to the third round of the NIST competition.

3.3.1 Symbols and subroutines

Definition 3.6 (𝑅𝑞). 𝑅𝑞 describes the main polynomial ring that is used. 𝑅𝑞 is defined
as 𝑅𝑞 ∶= ℤ𝑞[𝑋]/(𝑋 𝑛 + 1).

Definition 3.7 (𝑆𝜂). 𝑆𝜂 denotes the set of all polynomials in 𝑅𝑞 with coefficients in
[−𝜂, +𝜂].

Definition 3.8 ( ̃𝑆𝛾1). ̃𝑆𝛾1 denotes the set of all polynomials in 𝑅𝑞 with coefficients in
[−𝛾1, +𝛾1).

Definition 3.9 (𝐵𝜏). 𝐵𝜏 denotes the set of all polynomials in 𝑅𝑞 with exactly 𝜏 coefficients
in {+1, −1}, and all the other coefficients 0.

Definition 3.10 (�̂�𝑞). �̂�𝑞 describes the NTT domain of 𝑅𝑞 (and will be concretely defined
in Equation (3.7)).

Definition 3.11 (H). H is a cryptographic hash function that is modeled as a random
oracle with an output length of 256 bits. It is instantiated with SHAKE256.

Definition 3.12 (CRH). CRH is another cryptographic hash function, required to be
collision resistant, which is also instantiated with SHAKE256. It is different from H in
that its output is 384 bits long.

Definition 3.13 (ExpandA, ExpandS, and ExpandMask). ExpandA, ExpandS, and Ex-
pandMask each pseudorandomly sample polynomials uniformly from a seed. ExpandA
samples polynomials in �̂�𝑞, ExpandS samples polynomials in 𝑆𝜂, and ExpandMask
samples polynomials in ̃𝑆𝛾1 .
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Definition 3.14 (SampleInBall). The challenge ̃𝑐 that is produced by the hash function
on line 20 of algorithm 3.17 is a 256-bit bit-string. To convert this bit-string into an
element in 𝐵𝜏, it is used as a seed for a SHAKE256 instance. The destination polynomial 𝑐
is initialized as 𝑐 ∶= 1 ⋅ 𝑋 0 +⋯+ 1 ⋅ 𝑋 𝜏−1. Then 𝜏 bits are squeezed from the SHAKE256
instance to randomize the signs of the non-zero coefficients. More random bits are
squeezed and used for a Fisher–Yates shuffling algorithm [Dur64] that randomizes the
location of the 1 coefficients in 𝑐. The resulting polynomial is a polynomial that is
uniformly distributed in 𝐵𝜏.

Definition 3.15 (PopCount). PopCount(𝑥) returns the population count (or Ham-
ming weight) of 𝑥, i.e., the number of non-zero coefficients. PopCount(x) is computed
recursively from the elements of x, i.e., PopCount(x) = ∑

𝑥𝑖∈x
PopCount(𝑥𝑖).

Definition 3.16 (MakeHint and UseHint). MakeHint(𝑧, 𝑟 , 𝛼) returns a hint bit ℎ that
is 1 if HighBits(𝑟 , 𝛼) ≠ HighBits(𝑟 + 𝑧, 𝛼) or 0 if both terms are equal. UseHint(ℎ, 𝑟 , 𝛼)
uses the hint generated by MakeHint to recover the original value of 𝑟.

Together, MakeHint and UseHint satisfy

UseHint(MakeHint(𝑧, 𝑟 , 2𝛾2), 𝑟 , 2𝛾2) = HighBits(𝑟 + 𝑧, 2𝛾2).

3.3.2 KeyGen, Sign & Verify

The key generation, signing, and verification algorithms are listed in Algorithm 3.17.
Even though the real Dilithium algorithm looks a lot more complex, it still follows
the same structure as the simplified algorithm that we saw earlier in Algorithm 3.3.

In the new version, the KeyGen algorithm now takes a single random seed 𝜁 as
input. From that seed, three other seeds 𝜌, 𝜍, and 𝐾 are sampled. 𝜌 denotes the seed
which determines the value of A; 𝜍 determines the secret key vectors s1 and s2; and 𝐾
is used during the signing algorithm to generate random ys. This tweak (generating
the keypair from a single seed) allows us to regenerate the secret key from 𝜁 every
time when we are signing messages. This can be useful in cases in which a device’s
key storage space is limited, as 𝜁 is just 32 bytes in size.

The computation of t = As1 + s2 goes via the number theoretic transform (NTT).
NTT-based multiplications are a very efficient method to multiply the polynomials in
𝑅𝑞, which will be covered in more depth in Section 3.4. After t is computed, it is split
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Algorithm 3.17: Dilithium signature scheme.

1: function KeyGen(𝜁 ∈ {0, 1}256)

2: (𝜌, 𝜍, 𝐾) ∈ {0, 1}256×3 ∶= H(𝜁 )
3: (s1, s2) ∈ 𝑆ℓ𝜂 × 𝑆𝑘𝜂 ∶= ExpandS(𝜍)
4: Â ∈ 𝑅𝑘×ℓ

𝑞 ∶= ExpandA(𝜌)
5: t ∶= As1 + s2 ▷ Compute As1 as NTT−1(Â ⋅ NTT(s1))
6: (t1, t0) ∶= ([t]𝑑, [t]𝑑) ▷ Recall that [_]𝑑 and [_]𝑑 denote bit-selection (Sec. 2.2)
7: tr ∈ {0, 1}512 ∶= CRH(𝜌 ‖ t1)
8: return (sk ∶= (𝜌, 𝐾, tr, s1, s2, t0), pk ∶= (𝜌, t1))

9: function Sign((𝜌, 𝐾, tr, s1, s2, t0) ∶= sk, 𝑀)
10: Â ∈ 𝑅𝑘×ℓ

𝑞 ∶= ExpandA(𝜌)
11: 𝜇 ∈ {0, 1}384 ∶= CRH(tr ‖ 𝑀)
12: rnd ∈ {""} ∪ {0, 1}256 ∶= "" ▷ Or rnd

$
← {0, 1}256 (see Section 3.3.4)

13: 𝜌′ ∈ {0, 1}384 ∶= CRH(𝐾 ‖ rnd ‖ 𝜇)
14: 𝜅 ∶= 0 ▷ 𝜅 is a 16-bit counter
15: loop ▷ Precompute ̂s1 = NTT(s1), ̂s2 = NTT(s2), ̂t0 = NTT(t0)
16: y ∈ ̃𝑆ℓ𝛾1 ∶= ExpandMask(𝜌′ ‖ 𝜅)
17: 𝜅 ∶= 𝜅 + 1
18: w ∶= Ay ▷ Compute w ∶= NTT−1(Â ⋅ NTT(y))
19: w1 ∶= HighBits(w, 2𝛾2)
20: ̃𝑐 ∈ {0, 1}256 ∶= H(𝜇 ‖ w1)
21: 𝑐 ∈ 𝐵𝜏 ∶= SampleInBall( ̃𝑐) ▷ Precompute ̂𝑐 ∶= NTT(𝑐)
22: z ∶= y + 𝑐 ⋅ s1 ▷ Compute 𝑐s1 ∶= NTT−1( ̂𝑐 ∘ ̂s1)
23: r0 ∶= LowBits(w − 𝑐s2, 2𝛾2) ▷ Compute 𝑐s2 ∶= NTT−1( ̂𝑐 ∘ ̂s2)
24: if ‖z‖∞ ≥ 𝛾1 − 𝛽 then ▷ z-check
25: continue
26: if ‖r0‖∞ ≥ 𝛾2 − 𝛽 then ▷ r0-check
27: continue
28: h ∶= MakeHint(−𝑐t0, w − 𝑐s2 + 𝑐t0, 2𝛾2) ▷ Compute 𝑐t0 ∶= NTT−1( ̂𝑐 ∘ ̂t0)
29: if ‖𝑐t0‖∞ ≥ 𝛾2 or PopCount(h) > 𝜔 then ▷ Compression check
30: continue
31: return (z, h, ̃𝑐)

32: function Verify((𝜌, t1) ∶= pk, 𝑀, 𝜎)
33: Â ∈ 𝑅𝑘×ℓ

𝑞 ∶= ExpandA(𝜌)
34: tr ∈ {0, 1}512 ∶= CRH(pk) ‖ 𝑀
35: 𝜇 ∈ {0, 1}384 ∶= CRH(tr)
36: 𝑐 ∈ 𝐵𝜏 ∶= SampleInBall( ̃𝑐) ▷ Precompute ̂𝑐 ∶= NTT(𝑐)
37: w1

′ ∶= UseHint(Az − 𝑐t1 ⋅ 2𝑑, 2𝛾2) ▷ Compute as NTT−1(Â ∘ ẑ − ̂𝑐 ∘ ̂t1 ⋅ 2𝑑)
38: return ⟦ ̃𝑐 = H(𝜇 ‖ w1

′)⟧ and ⟦‖z‖∞ < 𝛾1 − 𝛽⟧
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in two, with t1 containing the “high bits”, and t0 containing the “low bits”. This is part
of a public-key compression scheme that is implemented in Dilithium, whose details
are not really important. The key takeaway is that, even though t0 is part of the secret
key, its exclusion from pk is only done to reduce the public key size. t0 does not need
to remain secret for the security of Dilithium. Lastly, tr is a domain-separation value
that is precomputed during the key generation algorithm.

Moving over to the signature generation algorithm, we first precompute a batch
of values, such that they do not have to be recomputed during every iteration of
the rejection-sampling loop: Â, 𝜇, 𝜌′, ̂s1, ̂s2, ̂t0. On Line 15, we enter the rejection-
sampling loop. Just as in the simplified version of Dilithium, we first generate a nonce
vector y. Via the NTT domain, we compute the commitmentw1 ∶= HighBits(Ay, 2𝛾2).
𝜇 ‖ w1 is hashed into the challenge bitstring ̃𝑐. This bitstring is used as a seed for
the polynomial representation of the challenge (𝑐) with the SampleInBall function.
𝑐s1 and 𝑐s2 are computed via the NTT domain, and then the response z is computed.
After the main rejection-sampling checks (z-check and r0-check) pass, the core of the
signature generation has finished. From Line 28 and further, z, ̃𝑐 are public and could
be encoded into a signature. Lines 28–30 compute some auxiliary information into h
in order to help the verifier to verify the signature with only t1.

The verification routine again precomputes the values Â, 𝜇, and tr. It uses the
information in h to reconstruct w1 without t0. Then it checks if the hash of 𝜇 ‖ w1
matches ̃𝑐, and it ensures that ‖z‖∞ < 𝛾1 − 𝛽.

3.3.3 Parameter sets

Table 3.1 lists all of the Dilithium parameters based on the NIST competition require-
ments. In this table Dilithium{2,3,5} targets the NIST security level {2,3,5}. That is,
Dilithium2 targets a security level equivalent to finding a collision for a 256-bit hash
function; Dilithium3 targets 192-bit key search; and Dilithium5 targets 256-bit key
search [NIST16].

3.3.4 Randomized signatures

Although Dilithium signature generation is principally defined as a deterministic
algorithm, there exists a non-deterministic variant. In this variant, on Line 13 of
Algorithm 3.17, rnd is initialized with a random value, instead of the empty string
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Table 3.1: Dilithium parameters

NIST security level Dilithium2 Dilithium3 Dilithium5

sk size [B] 2528 4000 4864
pk size [B] 1312 1952 2592
𝜎 size [B] 2420 3293 4595

𝑛 (ring dimension) (a) 256 256 256
𝑞 (main modulus) (a) 223 − 213 + 1 223 − 213 + 1 223 − 213 + 1
(𝑘, ℓ) (dimensions of A) (4, 4) (6, 5) (8, 7)
𝜂 (max coeff value of s1, s2) 2 4 2
𝜏 (pop count of 𝑐) 39 49 60
𝛽 (= 𝜏 ⋅ 𝜂) 78 196 120
𝛾1 (max coeff value of y) 217 219 219
𝛾2 (max coeff value of w0 and r0) (𝑞 − 1)/88 (𝑞 − 1)/32 (𝑞 − 1)/32
𝑑 (bit size of t0) (a) 13 13 13
𝜔 (max of hints set) 80 55 75

Pr[¬reject] (b) 0.24 0.20 0.26
𝔼[#iterations] (c) 4.25 5.09 3.85
𝑥 ∶ Pr[#iterations ≥ 𝑥] ≤ 2−128 (d) 332 406 296
(a) This value is the same across all parameter sets.
(b) Based on [LDKL+22, Equation 5].
(c) 𝔼[iterations] =

∞
∑
𝑘=1

𝑘 ⋅ Pr[reject]𝑘−1 ⋅ Pr[¬reject] is the expected (mean of the)

number of rejection-sampling loop iterations during the signature generation
algorithm.

(d) With probability (1 − 2128), the rejection-sampling loop in the signature gener-

ation algorithm will take at most 𝑥 iterations (computed as − 128
log2 Pr[reject]

).

(""). This will result in different y vectors being generated for different signatures
over the same message.

In deterministic Dilithium, the Sign function does not need to be provided a strong
randomness source (whichmay be difficult on some embedded platforms), and it makes
it easier to test the correctness of generated signatures using established test vectors.
On the other hand, when a hardware RNG is present, randomized implementations
may far outperform their deterministic equivalents in terms of speed. More so, in
embedded implementations, SHAKE256 is sometimes more prone to side-channel
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Figure 3.2: The distribution of z = y + 𝑐s1 before the z-check (if 𝑐s1 is assumed to be
randomly distributed in 𝑆ℓ𝛽).

leakage than the internal RNG. In these cases, we might favor randomized signature
generation.

3.3.5 Rejection sampling

Dilithium is based on FSwA, and as such, the signature generation algorithm is built
around a rejection-sampling loop. Let us zoom in a bit more into the rejection sampling
property of Dilithium, as it is not very typical for signature schemes to be built around
rejection sampling.

The crux of Dilithium that leads to rejection sampling is the ability to construct
simulated transcripts with 𝒮. z vectors before the z-check depend on s1, and r0 vectors
before the r0-check depend on s2. These dependencies violate the zero-knowledgeness
property, as no simulator can be constructed that generates simulated transcripts that
are statistically independent from real transcripts.

z-check. In the signature generation algorithm, the z = y + 𝑐s1 addition “blurs” the
uniform value y, which is illustrated in Figure 3.2. After this addition (before the
check), the distribution of z is uniform between −𝛾1 + 𝛽 and 𝛾1 − 𝛽, but in the regions
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1
Figure 3.3: Probability distribution of z before and after the z-check, and the zone
where z coefficients lead to an abort.

[−𝛾1 − 𝛽, −𝛾1 + 𝛽] and [𝛾1 − 𝛽, 𝛾1 + 𝛽) the probability ramps up and down. More
importantly, in these regions the probability distribution also depends on 𝑐s1

To overcome this, the z-check is added. The z-check cuts off the ramps from both
sides of the probability distribution of z. This leaves a z vector with all coefficients
uniformly distributed in (−𝛾1 + 𝛽, 𝛾1 − 𝛽) as depicted in Figure 3.3 (i.e., z is uniform
in 𝑆ℓ𝛾1−𝛽) which can easily be simulated by 𝒮.

r0-check. The r0-check has a similar function, as it ensures the zero-knowledgeness
of r0. In Algorithm 3.3, r ∶= w − 𝑐s2, which is recovered during as r = Az − 𝑐t. For
valid signatures it holds that r1 = w1, therefore the verifier and adversary also know
r − r1 = r0 = LowBits(w − 𝑐s2, 2𝛾2).

Recall from Section 3.2.3 that the addition of 𝑐s2 did not lead to any “carries” in
the high-bits part of r, because otherwise w1 would not equal r1. However, this
means that if a coefficient of LowBits(w− 𝑐s2, 2𝛾2) is close to ±𝛾2, this means that that
coefficient in 𝑐s2 is small. As such, coefficients close to ±𝛾2 depend on 𝑐s2.

Indeed, the shape of the probability distribution of r0 ∣ (r1 = w1) is similar to that of
y + 𝑐s1 in Figure 3.2. Conversely, we cut off the same ramps from the edges, similar to
the action depicted in Figure 3.3. This leads to a r0 vector that is uniformly distributed
in 𝑆𝑘𝛾2−𝛽, which is simulatable by 𝒮.
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Declassifying the branch condition bit. In Section 2.6.1, we mentioned that we
do not branch on values that are secret. However, before the checks, both z and r0 are
secret vectors. In order to reject the signature if one of the vectors exceeds the norm
bound, we need to Declassify them first. This is done on a coefficient-wise basis. That
is, for each coefficient it is determined (in constant-time) whether they exceed the
bound, which will result in a bit 𝑏 ∈ {true, false}. This bit is declassified, after which
the declassified bit is used as the conditional for the subcheck for this coefficient.

Practical implications. As described, after aborting on an “incorrect” signature,
the signing algorithm keeps generating new candidate signatures until one of them
passes both checks. The acceptance probability is constant and listed in Table 3.1
under the label Pr[¬reject].

Because of the rejection-sampling loop, the signing algorithm has a probabilistic
runtime. Every loop iteration the algorithm might finish, leading to a geometrically
distributed number of loop iterations, as illustrated in Figure 3.4. This leads to an
algorithm that may, under very unlucky scenarios, take a long time to execute. For
example, on average once every 220 (≈ 1million) executions,Dilithium3-Signwill take
at least 64 iterations to execute. This bad “worst-case” performance is a significant
weakness of Dilithium, and it might pose a problem for real-time applications.

Furthermore, we cannot use the convention of reporting our software speed bench-
marks by median, because that convention is based on the assumption that an algo-
rithm always takes the same time to execute (with all deviations being attributed to
noise produced by the platform). Instead, for Dilithium we report speed benchmarks
using the average run-time.

3.4 The number theoretic transform

Schoolbook multiplication. Apart from computing Keccak permutations, most
of Dilithium’s run-time is occupied by multiplications in 𝑅𝑞.4 The naive method of
computing the product of two polynomials 𝑎 and 𝑏 is to use the Schoolbook method.
That is, we compute

4In Chapter 4, on Cortex-M4 about 80% of signature verification is Keccak, and of the other 20%, about
70% of functions contain arithmetic in 𝑅𝑞.
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Figure 3.4: Expected percentage of Sign executions that needs at least 𝑡 rejection-
sampling loop iterations.

(𝑎 ⋅ 𝑏)𝑘 = ∑
𝑖+𝑗=𝑘

𝑎𝑖𝑏𝑗. (3.4)

However, our ring 𝑅𝑞 isℤ𝑞[𝑋]/(𝑋 𝑛+1), so whenwe take into account the reduction
of the product into an (𝑛 − 1)-degree polynomial, we get

(𝑎 ⋅ 𝑏)𝑘 = ∑
𝑖+𝑗≡𝑘,𝑖+𝑗<𝑛

𝑎𝑖𝑏𝑗 − ∑
𝑖+𝑗≡𝑘,𝑖+𝑗≥𝑛

𝑎𝑖𝑏𝑗. (3.5)

Using this method, for every coefficient in the product, we need to do 𝑛 multiplica-
tions of coefficients. Because we need to do this for 𝑛 coefficients in the product, this
results in a multiplication complexity of 𝒪(𝑛2). For Dilithium, which has a not-so-
small 𝑛 = 256, this results in very slow Schoolbook polynomial multiplications.

In order to make the Dilithium scheme faster, the Dilithium scheme is heavily
tuned to enable faster polynomial multiplications through the use of the number
theoretic transform (NTT). Using the NTT, the polynomial multiplication complexity
in Dilithium is reduced to 𝒪(𝑛 log 𝑛).
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The number theoretic transform is an application of the Fourier transform applied
to finite fields [Fid72; Pol71]. It works by choosing a polynomial ring such that
multiplication becomes analogous to vector-convolution of the coefficient vectors.
Now the convolution theorem applies, which states that where �̂� = NTT(𝑎) and
�̂� = NTT(𝑏),

𝑎 ⋅ 𝑏 = NTT−1(�̂� ∘ �̂�). (3.6)

With this new method NTT-based method of multiplying polynomials, the com-
plexity is dominated by NTT and NTT−1. Fortunately, just as with regular Fourier
transforms, we can apply the fast Fourier transform (FFT) [CT65] to implement NTT
and NTT−1 in 𝒪(𝑛 log 𝑛). Now the full multiplication is implemented in 𝒪(𝑛 log 𝑛).

Splitting 𝑅𝑞 using the CRT. The Chinese remainder theorem (CRT) allows us to
split 𝑅𝑞 into two smaller rings. The CRT (generalized to rings) considers a list of 𝑘
polynomials 𝑎𝑖 modulo some other polynomials 𝑚𝑖 which are all pairwise coprime.
Now let 𝑀 be the product of these moduli, i.e., 𝑀 = 𝑚1⋯𝑚𝑘. Then every list of
polynomials 𝑎1, … , 𝑎𝑘 describes exactly one polynomial 𝐴 mod 𝑀.

The polynomial modulus in 𝑅𝑞 is 𝑀 = 𝑋 256 + 1. We find that 𝑀 can be factorized
into 𝑚1 = 𝑋 128 − 𝜁4 and 𝑚2 = 𝑋 128 + 𝜁4, where 𝜁𝑘 is the 𝑘th primitive root of unity
modulo 𝑞. In this situation the CRT states that all polynomials modulo 𝑋 256 + 1 can
be represented as two polynomials modulo 𝑋 128 − 𝜁4 and 𝑋 128 + 𝜁4 respectively. Or
in other words,

ℤ𝑞[𝑋]/(𝑋 256 + 1) ≅ ℤ𝑞[𝑋]/(𝑋 128 − 𝜁4) × ℤ𝑞[𝑋]/(𝑋 128 + 𝜁4).

Together, ℤ𝑞[𝑋]/(𝑋 128 − 𝜁4) and ℤ𝑞[𝑋]/(𝑋 128 + 𝜁4) form a residue number system
(RNS) for 𝑅𝑞. As such, the addition and multiplication in 𝑅𝑞 can be implemented
by doing those same operations on each of the split rings independently. This does
not impact the speed of addition, as we needed 256 coefficient additions before
splitting, and after splitting 𝑅𝑞 we still need 256 coefficient additions. However for
multiplication, the amount of coefficient multiplications has been reduced from 2562

to 2 ⋅ 1282. Using this RNS, the number of base multiply operations has been reduced
by a factor of 2.
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Recursing down. From here, we can split up the ring system further by factoring
𝑋 128 − 𝜁4 and 𝑋 128 − 𝜁4. This works, as

𝑋 128 − 𝜁4 = (𝑋 64 − 𝜁8)(𝑋 64 + 𝜁8), and

𝑋 128 + 𝜁4 = (𝑋 64 − 𝜁 38 )(𝑋 64 + 𝜁 38 ).

A pattern exposes itself to us here. A polynomial (𝑋 𝛼−𝜁𝛽) factors into (𝑋 𝛼/2∓𝜁2𝛽).
And, as −1 = 𝜁2, a polynomial (𝑋 𝛼 + 𝜁𝛽) factors into (𝑋 𝛼/2 ∓ 𝜁4𝜁2𝛽). So, after another
layer of splitting, we get an even more granular factorization of 𝑋 256 + 1:

(𝑋 64 − 𝜁8)(𝑋 64 + 𝜁8)(𝑋 64 − 𝜁 38 )(𝑋 64 + 𝜁 38 )

We can keep splitting these modulus polynomials until we are down to the last 𝜁𝑘
value, which is 𝜁512; the 512th primitive root of unity. Because it is the last 𝜁𝑘 value,
we will call this one 𝜁 from here on5. In the end, we end up with the factorization of
(𝑋 256 + 1):

(𝑋 − 𝜁 )(𝑋 + 𝜁 )(𝑋 − 𝜁 129)(𝑋 + 𝜁 129)⋯ (𝑋 − 𝜁 127)(𝑋 + 𝜁 127)(𝑋 − 𝜁 255)(𝑋 + 𝜁 255)

Correspondingly, we have constructed a ring system of 256 rings (with all moduli
of degree 1) that is isomorphic to 𝑅𝑞. We will call this ring system �̂�𝑞:

�̂�𝑞 = ℤ𝑞[𝑋]/(𝑋 − 𝜁 ) × ℤ𝑞[𝑋]/(𝑋 + 𝜁 ) × ℤ𝑞[𝑋]/(𝑋 − 𝜁 129) × ℤ𝑞[𝑋]/(𝑋 + 𝜁 129) × ⋯

⋯×ℤ𝑞[𝑋]/(𝑋 − 𝜁 127) × ℤ𝑞[𝑋]/(𝑋 + 𝜁 127) × ℤ𝑞[𝑋]/(𝑋 − 𝜁 255) × ℤ𝑞[𝑋]/(𝑋 + 𝜁 255) (3.7)

During each of these splits, we reduce the number of coefficient multiplications in
a polynomial multiplication by a factor of 2. After 𝑛 layers of splitting, the updated
complexity of polynomial multiplication is 𝒪(𝑛). This follows from intuition: after 𝑛
layers, we end up with 𝑛 polynomials of degree 0. Each of those is multiplied using a
single coefficient multiplication.

The forward transform. Building on the construction from the previous para-
graphs, we can construct an efficient mapping from 𝑅𝑞 (the “time” domain) to �̂�𝑞 (the
NTT domain). To transform a polynomial 𝑎 ∈ ℤ𝑞[𝑋]/(𝑋 2𝑦−𝑧2) one layer towards the
NTT domain, we essentially reduce it modulo ℤ𝑞[𝑋]/(𝑋 𝑦 − 𝑧) and ℤ𝑞[𝑋]/(𝑋 𝑦 + 𝑧):

5The rule for computing 𝜁𝑘 values from 𝜁 is 𝜁𝑘 = 𝜁 512/𝑘.
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𝑎𝐿 ≡ 𝑎 mod (𝑋 𝑦 − 𝑧)

𝑎𝑅 ≡ 𝑎 mod (𝑋 𝑦 + 𝑧)
(3.8)

As an example, we take the first split that transforms a polynomial 𝑎 ∈ ℤ𝑞[𝑋]/(
𝑋 256+1) into two polynomials (𝑎𝐿, 𝑎𝑅) ∈ ℤ𝑞[𝑋]/(𝑋 128−𝜁 128) ×ℤ𝑞[𝑋]/(𝑋 128+𝜁 128).

Let us first look at 𝑎𝐿. We need to take all the “top” coefficients 𝑎𝑖 where 𝑖 ≥ 128
and reduce them modulo 𝑋 128 − 𝜁 128. Because 𝑋 128 ≡ 𝜁 128, we know that 𝑎𝑖𝑋 𝑖 ≡
𝑎𝑖𝜁 128𝑋 𝑖−128. So to get rid of the top coefficients, we multiply them with 𝜁 128 and add
them to the coefficient that is 128 spots further down. This results in:

𝑎𝐿 = (𝑎0 + 𝜁 128𝑎128) + (𝑎1 + 𝜁 128𝑎129)𝑋 + (𝑎2 + 𝜁 128𝑎130)𝑋 2 + ⋯ (3.9)

Now let us look at 𝑎𝑅. In this case the reduction polynomial has a positive 𝜁 128

term, instead of a negative one. So in this case, because 𝑋 128 = −𝜁 128, we multiply
with −𝜁 128 instead of 𝜁 128:

𝑎𝑅 = (𝑎0 − 𝜁 128𝑎128) + (𝑎1 − 𝜁 128𝑎129)𝑋 + (𝑎2 − 𝜁 128𝑎130)𝑋 2 + ⋯ (3.10)

Both formulas can be applied in parallel in a coefficient-wise fashion. The benefit is
that, for every coefficient, we only need to compute each multiplication 𝑎𝑖 ⋅ 𝜁 128 only
once. Then, after respectively adding and subtracting, both reductions are computed
using only 128 coefficient-wise multiplications.

The base operation that maps a pair of (𝑎𝑖, 𝑎𝑖+128) coefficient to (𝑎𝐿,𝑖, 𝑎𝑅,𝑖) is called a
butterfly operation. This particular butterfly (that of the forward transform), is often
called the Cooley–Tukey (CT) butterfly [CT65].

The butterfly operation is the central element of the fast Fourier algorithm and can
be depicted using a “butterfly diagram”. It is called a “butterfly” because, with a bit of
imagination, you can see a butterfly in its arrows.

The inverse transform. Using the forward transform, we can relatively easily
construct the inverse transform. Let me illustrate this for the example that we covered
in the previous paragraph (Equations (3.9) and (3.10)). After removing some of the
clutter, these equations show the following butterfly operation:
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𝑎𝑘 𝑎𝑘+128

× 𝜁 128 (twiddle factor)

+ −

𝑎𝐿,𝑘 𝑎𝑅,𝑘

Figure 3.5: Diagram of the Cooley–Tukey butterfly for the first layer.

𝑎𝐿,0 = 𝑎0 + 𝜁 128𝑎128
𝑎𝑅,0 = 𝑎0 − 𝜁 128𝑎128

In the inverse butterfly, our inputs are 𝑎𝐿,0 and 𝑎𝐿,0; and we need to find 𝑎0 and 𝑎128.
First, we add the equations together to find a formula for 𝑎0:

𝑎𝐿,0 + 𝑎𝑅,0 = (𝑎0 +����𝜁 128𝑎128) + (𝑎0 −����𝜁 128𝑎128)

2𝑎0 = 𝑎𝐿,0 + 𝑎𝑅,0
𝑎0 = 2−1(𝑎𝐿,0 + 𝑎𝑅,0)

Now, we take the difference of the equations to find a formula for 𝑎128:
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𝑎(1)𝐿,0 − 𝑎(1)𝑅,0 = (��𝑎0 + 𝜁 128𝑎128) − (��𝑎0 − 𝜁 128𝑎128)

2𝜁 128𝑎128 = 𝑎(1)𝐿,0 − 𝑎(1)𝑅,0

𝑎128 = 2−1𝜁−128 (𝑎(1)𝐿,0 − 𝑎(1)𝑅,0)

The reverse butterfly operation looks similar to the forward operation and this
one is usually called the Gentleman–Sande (GS) or Sande–Tukey butterfly [GS66].
Its butterfly diagram is listed in Figure 3.6. We observe however that an extra factor
2−1 was introduced.6 That normalization factor 2−1 is the same in every layer, so
we can accumulate this factor for every layer into a single multiplication with 2−ℓ,
where ℓ is the number of NTT layers. Even though it does not matter when the 2−ℓ

normalization factor is factored in, most implementations apply the normalization at
the end of the inverse transform.

𝑎𝐿,𝑘 𝑎𝑅,𝑘

× 𝜁−128 (twiddle factor)

+ −

2𝑎𝑘 2𝑎𝑘+128

Figure 3.6: Diagram of the Gentleman–Sande butterfly for the last layer.

Polynomialmultiplication efficiency. For both the forward, as well as the inverse
transform, 𝒪(𝑛⋅ℓ) operations are needed to compute the transformed representation of

6This factor does not come out of nowhere. It is similar to the normalization factor that we find in the
common formula for the inverse discrete Fourier transform.
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a polynomial. Hence, a full polynomial multiplication, i.e., NTT−1(NTT(𝑎) ∘ NTT(𝑏))
is 𝒪(𝑛 ⋅ ℓ) as well. This is a lot faster than the 𝒪(𝑛2) complexity for the Schoolbook
method, which highlights the importance of the NTT in Dilithium.

The NTT and FFT. The “(inverse) number theoretic transform” refers to the math-
ematical mapping that we just covered. The “fast Fourier transform” refers to an
implementation of that mathematical mapping. Indeed, the FFT is not the only al-
gorithm that implements the NTT. One could also express the (inverse) NTT using
matrix multiplication, as described in one of [Gre20; Kan22], even though it would
not make sense from a performance perspective.

Usually, the FFT algorithm and its inverse are called just called the “FFT” and
“inverse FFT” algorithm. However, due to the vast literature on the subject, and the
appropriation of the algorithm by the cryptographic community, multiple synonyms
exist. For example, the (forward) FFT is also known as the “Cooley–Tukey (CT)
FFT”, or the “decimation-in-time (dit) FFT ”. Conversely, the inverse FFT is also
known as the “Gentleman–Sande (GS) FFT”, the “Sande–Tukey (ST) FFT”, or the
“decimation-in-frequency (dif) FFT”.7 Because of the tight relation to signal processing,
the untransformed data is said to be in the time domain (𝑅𝑞). The transformed data is
said to exist in the NTT domain or the frequency domain (�̂�𝑞).

Incomplete NTTs. We mentioned earlier that a 512th primitive root of unity must
exist to execute the NTT modulo 𝑞, which is the case for Dilithium. While this is true,
it is still possible to execute an NTT for ℓ < log2 𝑛 layers. We call this transformation
an incomplete NTT. When computing polynomial products with an incomplete NTT,
we apply some of the NTT layers, and then use the Schoolbook (or some other)
method, to multiply the base polynomials. This idea is used in many implementations,
e.g., when the modulus does not support an NTT on log2 𝑛 layers, or as a performance
performance optimization [ABCG20; ACCH+22; CHKS+21].

7Gentleman–Sande refers to the authors of the paper in which the inverse FFT butterfly was first de-
scribed [GS66]. That paper however describes that version of the algorithm as the “Sande version”,
implying that it was invented by Sande alone. Decades later, Cooley published an essay in which he
clarified that the inverse algorithm was proposed by Sande while they were following one of Tukey’s
courses, leading to the Tukey–Sande denomination [Coo87]. For consistency, we will only refer to this
algorithm as the Gentleman–Sande algorithm from this point on.
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Twisting NTTs. Multiplying all coefficients 𝑎𝑖 of 𝑎 ∈ 𝑅𝑞 by powers of a 2𝑛-th root of
unity 𝜁2𝑛 is called twisting [Ber01]. A twisting operation maps the polynomials from
ℤ𝑞[𝑋]/(𝑋 𝑛 + 1) to ℤ𝑞[𝑋]/(𝑋 𝑛 − 1), or back if the coefficients are divided instead.
Twisting during the NTT allows us to switch between kinds of butterfly operations,
i.e., we can use GS butterflies to compute the NTT, and we can use CT butterflies to
compute the inverse NTT. Twisting NTTs is a common optimization technique for
implementations of NTT-based lattice schemes [ADPS16; LN16; Sei18]. In Chapter 5
this is used to optimize the inverse NTT in Kyber and Dilithium.

Further reading. For more information about the number theoretic transform—
as it is used in Kyber and Dilithium—I highly recommend consulting the thesis of
Kannwischer [Kan22, Sec. 2.2.4, 2.2.5]. If you are looking for a more fundamental
source that also covers the Fermat Number Transform (see Chapter 5), I recommend
reading Nussbaumer’s book on the subject [Nus81, Chapter 8]. For more information
about twisting in the NTT, I recommend [Sei18, Section 2.1].
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4.1 Introduction

In the early stages of the NIST competition, there was still a scarcity of insight into
the performance of lattice schemes on small microcontrollers. There has already
been some efforts to optimize Dilithium for speed on the Cortex-M4, but the previous
work has surveyed only a subset of the algorithms (i.e., only signing) or parameter
sets (i.e., only for the NIST competition “recommended” security level). Moreover,
we feel that the Dilithium speed records could still be broken. Therefore, we see
a good reason to write a complete implementation for Cortex-M3 and Cortex-M4,
including all algorithms and parameter sets, using multiple different tradeoffs for
memory usage, and putting the resulting implementation in the public domain.

While the original work improves both the speed, as well as the memory usage of
Dilithium on both architectures, this chapter will cover only the improvements to
the speed. In Chapter 6, we will cover the memory improvements from this work
together with the more novel contribution of [BRS22]. At the time this research
was done, the NIST competition had advanced only to round 2. Therefore, unless
otherwise specified, all of this chapter’s contents refer to version 2 of the Dilithium
algorithm [DKLL+19].

Constant time & Cortex-M3. The Cortex-M4 architecture provides various ad-
vanced instructions for optimizing cryptographic schemes, which might be one of the
reasons why it gets so much attention from the cryptographic community. However
as we described in Section 2.5, the Cortex-M3 comes with one “feature” which does
appear interesting from an implementation and also from a side channel perspective:
Different from the Cortex-M4, it does not have a constant-cycle 32-bit multiplier

57



4

4 Fast Dilithium on Cortex-M3 and Cortex-M4

producing a 64-bit result, but only a variable-cycle one. Therefore, an implementation
of any scheme working on large (secret) integers compiled for the Cortex-M3 is most
likely going to leak information about these secret integers via timing side channels.
This has been shown to pose a problem for cryptographic schemes in preceding Arm
architectures [GOPT09]. It is particularly interesting for Dilithium, because of the
large prime modulus 𝑞 = 8380417. If existing implementations for Dilithium are sim-
ply compiled for the Cortex-M3, they are very likely to be vulnerable to timing attacks
within the polynomial multiplication. In this chapter, we build a safe constant-time
implementation of Dilithium on the Cortex-M3. That is, the execution time of the
algorithm is invariant over all the secret values in the algorithm.

Contribution. The contribution of this chapter is threefold: First, we further
optimize the existing Dilithium implementation for the Cortex-M4 by switching to a
signed polynomial representation and optimizing more parts of the scheme. Second,
we present the first constant-time implementation of Dilithium on the Cortex-M3.
Finally, as a by-product, we provide Cortex-M3 implementations of the lattice-based
key-encapsulation schemes Kyber and NewHope. This, most notably, consists of
constant-time implementations of the NTT and NTT−1 operations in those schemes.
The original work also contained stack consumptions and speed trade-offs for the
signing procedure of Dilithium, which will be covered in Chapter 6.

Code. The implementations of Dilithium, Kyber, and NewHope that are the result of
this work are in the public domain and can be obtained by following the instructions
described on page 10. The code is published and licensed under a CC0 copyright
waiver.

Related Work. Previous speed records for Dilithium on the Cortex-M4 were set by
Ravi, Gupta, Chattopadhyay, and Bhasin [RGCB19] and were built upon an implemen-
tation by Güneysu, Krausz, Oder, and Speith [GKOS18]. A masked implementation of
a modified Dilithium on Cortex-M3 is presented in [MGTF19]. In that paper, Migliore,
Gérard, Tibouchi, and Fouque propose to use a power-of-two modulus instead of the
original primemodulus to allow for cheaper masking. However, strictly speaking, they
do not implement the Dilithium scheme as it was submitted to NIST. There is an ex-
tensive line of work for Cortex-M4 implementation of lattice-based key-encapsulation
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mechanisms [ABCG20; AJS16; BKS19; BKV20; KBSV18; KRS19]. Similar studies
exist on hardware implementations and instruction set extensions [AELN+20; BUC19;
MTKS+20]. Other lattice-based signatures have been implemented on the Cortex-
M4: Pornin presents a fast constant-time implementation of Falcon on the Cortex-
M4 [Por19]; In 2019, [GR19] presented a masked implementation of qTesla; More
recently, [WTJB+20] presented a hardware-accelerated implementation of qTesla.

Structure of this chapter. Section 4.2 introduces the lattice-based signature scheme
Dilithium and the peculiarities of the Cortex-M3 and Cortex-M4 relevant for this work.
In Section 4.3 we present some improvements for the Cortex-M4. Section 4.4 presents
the first constant-time implementation of Dilithium on the Cortex-M3. Section 4.5
presents the performance results for both implementations. In Appendix 4.A, we
provide performance results for Kyber and NewHope on the Cortex-M3 which are a
by-product of this work.

4.2 Preliminaries

Dilithium version 2. The research of this chapter was done on the older version
of Dilithium that was submitted to round 2 of the NIST post-quantum competition.
Therefore not all of the specification from Section 3.3 applies, as it covered the
version of Dilithium that was submitted to the third round of the NIST competition.
Fortunately, the structure of the keygen, signing, and verification algorithms is more
or less the same.

Most of the updates to the scheme are in the parameter sets. Round-2 Dilithium
had the parameter sets Dilithium2, Dilithium3, and Dilithium4. In the third round of
the NIST competition, the CRYSTALS team tweaked the scheme and all its parameter
sets and renamed the highest security level from Dilithium4 to Dilithium5. For both
versions of Dilithium, the parameter sets are listed in Table 4.1.

Functions. As a central building block, Dilithium uses the NTT and NTT−1 func-
tions which are used to implement efficient polynomial multiplication of 𝑎, 𝑏 as
NTT−1(NTT(𝑎) ∘ NTT(𝑏)). The details of the Dilithium NTT are described in Sec-
tion 3.4, and between round-2 and round-3 Dilithium the use of the NTT is identical.
In addition, round-2 Dilithium uses a collision-resistant hash-function H directly
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outputting a challenge polynomial roughly following the method as described in
Definition 3.14. Furthermore, round-2 Dilithium defines the seed expansion functions
ExpandA and ExpandMask; the rounding functions Power2Round, HighBits, and
Decompose and the hint functions MakeHint and UseHint as defined in Section 3.3.1.
Even though small differences may be present between the different Dilithium ver-
sions, for brevity we omit the details of those functions and refer the reader to the
Dilithium specification for round 2 [DKLL+19].

4.3 Improving speed on Cortex-M4

Our Cortex-M4 implementation is based on the Dilithium implementation by Ravi,
Gupta, Chattopadhyay, and Bhasin [RGCB19], which includes the NTT and inverse
NTT assembly implementation from Güneysu, Krausz, Oder, and Speith [GKOS18].

In Dilithium, the NTT and inverse NTT are computed iteratively and in-place, such
that no auxiliary vectors are required to store intermediate results. For computing
the NTT, Dilithium uses such an iterative Cooley–Tukey algorithm, which takes its
input vector in normal order, and outputs the vector in bit-reversed order. The inverse
NTT is implemented using an iterative Gentleman–Sande algorithm, which takes its
input vector in bit-reversed order and returns a vector in normal order. Note that
this has no effect on the polynomial-multiplication property (using coefficient-wise
multiplication), as described in Section 4.2.

In our implementation similarly to previous work, we precompute and store the
twiddle factors in flash. The twiddle factors are stored in the Montgomery domain
(with modulus 𝑅 = 232), such that after the multiplication in the FFT butterfly, we can
use Montgomery reduction [Mon85; Sei18] to reduce the product modulo 𝑞.

After each level of the NTT and inverse NTT, the polynomial coefficients are grow-
ing in size due to additions and subtractions. Intuitively, we would apply a modular
reduction after each addition/subtraction operation. However, the coefficients in the
input polynomial are bounded by 2𝑞 (which is only 24 bits) and even if we do not
reduce mod 𝑞 after each level, we will not overflow the 32-bit registers in which we
store the coefficients. Therefore, we reduce each coefficient mod 𝑞 only once, at the
end of the NTT and inverse NTT. This technique of delaying the reduction is usually
referred to as lazy reduction.
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When implementing the NTT and inverse NTT, we first unroll the outer loop
which iterates over the 8 levels of the NTT and inverse NTT. Furthermore, similar
to the merging technique in [GOPS13], we can merge two levels of the NTT and
inverse NTT on Cortex-M4 ({0,1}, {2,3}, {4,5} and {6,7}). Merging 𝑘 layers here means
that instead of loading two coefficients, one loads the 2𝑘 coefficients which are used
together in 𝑘 consecutive layers. By doing so one can eliminate the load and store
operations between the layers. Hence, the number of layers that can be merged is
bounded by the available registers. For our implementation, we achieved the best
performance by merging two layers, using 4 registers for the polynomial coefficients
and 3 registers for the twiddle factors.1 As a consequence of the merge, the number
of store and load instructions is reduced by a factor of 2.

Lastly, the main difference that distinguishes our implementation from the one pub-
lished in [GKOS18] is changing the polynomial coefficients to signed representation.
When unsigned integers are subtracted from each other, it is possible for the result to
wrap around zero (when the result would be negative). To prevent this overflow, the
subtractions in the reference implementation are accompanied by an addition with
a multiple of 𝑞, pushing the results back into the positive domain. By switching to
the signed representation, the problem of negative overflows is fixed, and we do not
need this extra multiple-of-𝑞 addition. Therefore, switching to signed representation
allows us to eliminate all these additions throughout the code.

Algorithm 4.1: CT butterfly from [GKOS18]
input: p0, p1, twiddle
output: p0, p1
let: q=8380417, qinv=4236238847

1 umull tmp0, tmp1, p1, twiddle
2 mul pol1, tmp0, qinv
3 umlal tmp0, tmp1, p1, q
4 add p1, p0, q, lsl#1
5 sub p1, p1, tmp1
6 add p0, p0, tmp1

1Accordingly, for 𝑘 layers—if we do not reload or spill any value—we need 2𝑘 registers for the polynomial
coefficients and 1

2 𝑘(𝑘 + 1) registers for the twiddle factors.
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Algorithm 4.2: Our CT butterfly
input: p0, p1, twiddle
output: p0, p1
let: q=8380417, qinv=4236238847

1 smull tmp0, tmp1, p1, twiddle
2 mul p1, tmp0, qinv
3 smlal tmp0, tmp1, p1, q
4 sub p1, p0, tmp1
5 add p0, p0, tmp1

Algorithm 4.3: GS butterfly from [GKOS18]
input: p0, p1, twiddle
output: p0, p1
let: q=8380417, qinv=4236238847

1 add tmp0, p0, q, lsl#8
2 sub tmp0, tmp0, p1
3 add p0, p0, p1
4 umull tmp1, p1, tmp0, twiddle
5 mul tmp0, tmp1, qinv
6 umlal tmp1, p1, tmp0, q

Algorithm 4.4: Our GS butterfly
input: p0, p1, twiddle
output: p0, p1
let: q=8380417, qinv=4236238847

1 sub tmp0, p0, p1
2 add p0, p0, p1
3 smull tmp1, p1, tmp0, twiddle
4 mul tmp0, tmp1, qinv
5 smlal tmp1, p1, tmp0, q
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This is especially relevant for the NTT and inverse NTT implementations because
every butterfly operation has a subtraction. Algorithm 4.2 shows our improvements
to the CT butterfly in the NTT by [GKOS18] which is shown in Algorithm 4.1. For
the GS butterflies in the inverse NTT, the improvements are listed in Algorithms 4.3
and 4.4.

However, the overflow-mitigating additions were not only present in the NTT,
but also in the sampling of s1, s2, and y, polynomial subtraction, and unpacking
operations throughout the scheme. By switching to signed representation, we did not
only improve the performance of the NTT, but also of all the other routines listed
above.

Finally, in addition to improving the NTT and inverse NTT, we rewrote the point-
wise polynomial multiplication, uniform sampling of polynomials, and polynomial
reduction in assembly as these were the most expensive operations besides the already
optimized NTT, inverse NTT, and hashing operations using Keccak. We omit the
details, as they result straightforwardly from the reference code.

4.4 Fast Constant-Time NTTs on Cortex-M3

Our constant-time Cortex-M3 implementation of Dilithium is based on the Cortex-M4
implementation described in the previous section. To keep this section concise, we
only describe the differences here, which are mainly in order to make the implemen-
tation constant-time. When compiling the existing implementation [GKOS18] for the
Cortex-M3, we identify three functions that make use of the variable-time instructions
umull and umlal: NTT, NTT−1, and pointwise multiplication (∘). These functions are
the only ones that involve the multiplication of the 32-bit coefficients of polynomials.
When any of them operates on secret data, it will leak information through a timing
side channel.

Previous work by [MGTF19] suggests that the reference implementation of Dilithi-
um is constant time. This is however not true for Cortex-M3, because the compiler
is in no way prevented from emitting any of the variable-time instructions. In their
paper, the authors propose a modified Dilithiumwith a power-of-two modulus 𝑞 = 232

to allow for cheaper masking. As a side-effect of this proposed change, multiplications
can be done using mul, mls, and mla as those implicitly wrap their results modulo
232. In that case, implementing Dilithium in constant-time is more straightforward.
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Interestingly, many of the operations within Dilithium do not handle secret data,
and, hence, do not need to be constant time. Particularly, all operations in the sig-
nature verification (Algorithm 3.17, Verify) are only operating on public data and
can, therefore, be implemented in variable time. Similarly, in signature generation
(Algorithm 3.17, Sign) NTT(t0) (line 15), NTT(H(𝜇, w1)) (line 20), and NTT−1( ̂𝑐 ∘ t̂0)
(line 28) are not processing secret data as both t and 𝑐 are considered public. For
the details we refer to the security proof in [LDKL+19, Section 5]. The remaining
calls to NTT, NTT−1, and ∘ do process secret data. Similarly, all operations in the key
generation of Dilithium (Algorithm 3.17, Sign) have secret inputs. In our implementa-
tion we provide both a constant-time and variable-time (leaktime) implementation
implementations of NTT, NTT−1, and ∘. Because the variable-time implementations
are significantly faster, we prefer using them over the constant-time implementations
when we are only dealing with public data.

Note that, in theory, the compiler could introduce umull, umlal, smull, and smlal

instructions in other parts of the code as well. Since there is no easy way to prevent
compilers (gcc and clang) from emitting those instructions, we instead carefully
analyze the assembly generated by the compiler to not contain these instructions
in functions that are safe to leak. We add the suffix _leaktime to the names of
variable-time functions only operating on public data to support this analysis.

The remainder of this section describes the necessary changes to the Cortex-M4
implementation to ensure it executes in constant-time on the Cortex-M3. We de-
scribe the details from the bottom up, i.e., we start with the multiplication of coeffi-
cients, continue with the changes to the implementations of the Cooley–Tukey and
Gentleman–Sande butterfly operations, and finally describe the changes to the NTT,
NTT−1 and the rest of the scheme.

4.4.1 smull and smlal

AsDilithium uses a 23-bit modulus 𝑞, its polynomials are usually represented as vectors
of 32-bit values. Consequently, multiplying coefficients requires multiplication of 32-
bit values producing a 64-bit product. Usually, Montgomery multiplication is used, so
that the result is promptly reduced back to 32-bits. In our Cortex-M4 implementation
the Montgomery multiplication is computed using smull and smlal, which—as we
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discussed in Section 2.5—execute in variable-time on the Cortex-M3. In case the
inputs are secret, we cannot use those instructions.

In general, there are two approaches to address this issue: either re-implement
smull and smlal using available constant-time instructions (mul, mla, add) or using
a different representation of polynomials that does not require to multiply 32-bit
coefficients. We experimented with the latter approach by using multiple smaller 16-
bit polynomial multiplications to construct a larger 23-bit polynomial multiplication.
The idea is to perform polynomial multiplications in 𝑅𝑞 by first splitting up the
polynomial into multiple polynomials in ℤ𝑞𝑖/(𝑋

𝑛 + 1), performing the polynomial
multiplication in these smaller rings and then reconstructing the result in 𝑅𝑞 using
the explicit Chinese remainder theorem [BS07]. A similar approach is used in the
AVX2 implementation of NTRUPrime [BCLv19]. For the result to be correct, it needs
to hold that 2𝑛 ⋅ ⌊𝑞/2⌋2 < ∏𝑞𝑖. For example, one could use the NTT-friendly primes
{7681, 10753, 11777, 12289}. However, this approach turned out to be slower than re-
implementing the smull and smlal instructions using mul instructions, and hence we
did not use it in our implementation. Nonetheless, we present results for 16-bit NTTs
on the Cortex-M3 for the primes 3329 and 12289 which are used in the NIST key-
encapsulation candidates Kyber [ABDK+19] and NewHope [PAAB+19] respectively.
We report the results for the full schemes in Appendix 4.A.

To re-implement smull and smlal, we use the schoolbook approach, i.e., we repre-
sent the 32-bit inputs in radix 216 and compute the product as sums of 32-bit products.
Let 𝑎 = 216𝑎1 + 𝑎0 and 𝑏 = 216𝑏1 + 𝑏0, with 0 ≤ 𝑎0, 𝑏0 < 216 and −215 ≤ 𝑎1, 𝑏1 < 215,
then the product 𝑎𝑏 = 232𝑎1𝑏1 + 216(𝑎0𝑏1 + 𝑎1𝑏0) + 𝑎0𝑏0, with −231 ≤ 𝑎𝑖𝑏𝑗 < 231.
Accordingly, our constant-time assembly implementations for smull and smlal are
illustrated in Algorithm 4.5 and Algorithm 4.6. We denote them by SBSMULL and
SBSMLAL in the following. The four 16-bit halves of the two multiplicands are passed
in the registers 𝑎0, 𝑎1, 𝑏0, and 𝑏1; the 64-bit output is placed in 𝑐0 (lower half) and 𝑐1
(upper half). For smlal, 𝑐0 and 𝑐1 initially contain the value to be added to the product.
On the Cortex-M3, additions and multiplications use 1 cycle, while mla uses 2 cycles.
As such, the SBSMULL macro takes 7 cycles to execute, while SBSMLAL takes 9 cycles.

It is important to note that SBSMULL (and SBSMLAL) are not semantically equivalent
to smull (and smlal). In case the accumulation (𝑎0𝑏1+𝑎1𝑏0) in line 4 of Algorithm 4.5
or line 6 of Algorithm 4.6 overflows, the carry bit is lost and the result will not be
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Algorithm 4.5: Schoolbook smull (SBSMULL)

input: 𝑎 = a0 + a1 ⋅ 216
input: 𝑏 = b0 + b1 ⋅ 216
output: 𝑐 = 𝑎𝑏 = c0 + c1 ⋅ 232

1 mul c0, a0, b0
2 mul c1, a1, b1
3 mul tmp, a1, b0
4 mla tmp, a0, b1, tmp
5 adds c0, c0, tmp, lsl #16
6 adc c1, c1, tmp, asr #16

Algorithm 4.6: Schoolbook smlal (SBSMLAL)

input: 𝑎 = a0 + a1 ⋅ 216
input: 𝑏 = b0 + b1 ⋅ 216
input: 𝑐 = c0 + c1 ⋅ 232
output: 𝑐′ = 𝑐 + 𝑎𝑏 = c0 + c1 ⋅ 232

1 mul tmp, a0, b0
2 adds c0, c0, tmp
3 mul tmp, a1, b1
4 adc c1, c1, tmp
5 mul tmp, a1, b0
6 mla tmp, a0, b1, tmp
7 adds c0, c0, tmp, lsl #16
8 adc c1, c1, tmp, asr #16
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correct. Hence, our schoolbook multiplication does not support the full 32-bit range
of the inputs. In general, we have to consider two cases:

1. One of the factors (say 𝑏) is small, e.g., a twiddle factor (|𝑟 | < 𝑞
2 ) or the constant

𝑞. In that case, 𝑏1 is at most ⌊ 𝑞
216 ⌋ = 127. In the worst case, both 𝑏0 and 𝑎0 are

equal to 216 − 1. Consequently, for the addition (𝑎0𝑏1 + 𝑎1𝑏0) not to overflow,
𝑎1 can be at most ⌊ 2

31−1−127⋅(216−1)
216−1 ⌋ = 32641.

2. Both multiplicands can be equally large. This occurs, for example, in the
pointwise polynomial multiplication. In that case, both 𝑎0𝑏1 and 𝑎1𝑏0 need to
be less or equal to ⌊ 2

31−1
2 ⌋ = 230 − 1 and hence, 𝑎1, 𝑏1 ≤ ⌊ 2

30−1
216−1 ⌋ = 214.

Case 1 applies in the NTT and NTT−1. In the NTT, the coefficient values never
exceed 10𝑞, which is sufficiently small for the multiplication to remain safe. Similarly,
in the NTT−1 coefficients never exceed 128𝑞 < 32641 ⋅ 216.

Case 2 applies in the pointwise polynomial multiplication. In that case, the input
coefficients are bounded by 10𝑞 which is comfortably below 230.

4.4.2 Cooley–Tukey and Gentleman–Sande Butterflies

Algorithm 4.7: Constant-time Cooley–Tukey butterfly on the Cortex-M3
input: p0 (32-bit signed)
input: p1 = p1l + p1h ⋅ 216 (p1l 16-bit unsigned, p1h 16-bit signed)
input: twiddle = tl + th ⋅ 216 (tl 16-bit unsigned, th 16-bit signed)
output: p0, p1 (32-bit signed)
let: qinv = 4236238847, 𝑞 = 8380417 = ql + qh ⋅ 216

1 SBSMULL tmpl, tmph, p1l, p1h, tl, th ; (tmpl, tmph) ∶= (p1l, p1h) ⋅ twiddle
2 mul p1h, tmpl, qinv
3 ubfx p1l, p1h, #0, #16
4 asr p1h, p1h, #16
5 SBSMLAL tmpl, tmph, p1l, p1h, ql, qh ; (tmpl, tmph) ∶= (tmpl, tmph) + (p1l, p1h) ⋅ 𝑞
6 sub p1, p0, tmph
7 add p0, p0, tmph

Using constant-time SBSMULL and SBSMLAL subroutines, we can construct the but-
terfly operations needed to implement the NTT and NTT−1. Algorithm 4.7 depicts
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the modified Cooley–Tukey butterfly operation based on Algorithm 4.2. To be able
to use SBSMULL, 𝑝1 and the twiddle factor need to be loaded in half-words, while 𝑝0
can be loaded as a 32-bit word. For the multiplication by 𝑞, we require to have the
lower and the upper half-word of 𝑞 separately. Additionally, we need to split up the
32-bit result of the multiplication by −𝑞−1 into half-words (lines 3 and 4). In total,
the Cooley–Tukey butterfly operation requires 21 cycles on the Cortex-M3, while
Algorithm 4.2 only needs 5 cycles on the Cortex-M4.

Algorithm 4.8: Constant-time Gentleman–Sande butterfly on the Cortex-M3
input: p0, p1 (32-bit signed)
input: twiddle = tl + th ⋅ 216 (tl 16-bit unsigned, th 16-bit signed)
output: p0, p1 (32-bit signed)
let: qinv = 4236238847, 𝑞 = 8380417 = ql + qh ⋅ 216

1 sub tmp, p0, p1
2 add p0, p0, p1
3 ubfx tmpl, tmp, #0, #16
4 asr tmph, tmp, #16
5 SBSMULL tmp, p1, tmpl, tmph, tl, th ; (tmp, p1) ∶= (tmpl, tmph) ⋅ twiddle
6 mul tmph, tmp, qinv
7 ubfx tmpl, tmph, #0, #16
8 asr tmph, tmph, #16
9 SBSMLAL tmp, p1, tmpl, tmph, ql, qh ; (tmp, p1) ∶= (tmp, p1) + (tmpl, tmph) ⋅ 𝑞

Similarly, Algorithm 4.8 depicts our constant-time assembly implementation of
the Gentleman–Sande butterfly. As the addition and subtraction happens before the
multiplication by the twiddle factor, both 𝑝0 and 𝑝1 are loaded as full 32-bit words,
while the twiddle factor is again split into two half words. After the subtraction
in line 1, we split up the result before we pass it into SBSMULL. To perform the
Montgomery reduction, we again need the split up the result of the multiplication by
−𝑞−1 into halves, before multiplying it by 𝑞 using SBSMLAL. Each Gentleman–Sande
butterfly operation requires 23 cycles on the Cortex-M3 which compares to 5 cycles
for Algorithm 4.4 on the Cortex-M4.
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4.4.3 NTT, NTT−1, and ∘

Using the Cooley–Tukey butterfly from the previous section, we implement the NTT.
Similar to in the Cortex-M4 implementation, we pre-compute all the twiddle factors
and place them into flash. As our Cooley–Tukey butterfly requires the second coef-
ficient and the twiddle factor in halves, we load those using ldrh (for the unsigned
lower half-word) and ldrsh (for the signed upper half-word). This, however, signifi-
cantly increases register pressure and hinders the common optimization technique of
merging multiple levels of butterfly operations with the purpose of saving store and
load instructions. Therefore, we can not use that optimization and need to perform
one layer at a time. This also leads to a slightly different ordering of the twiddle
factors in memory. The results of the butterfly are returned as 32-bit values and can,
hence, be stored back using str.

For the NTT−1, we proceed likewise. However, the inputs to the butterfly have to
be loaded in full-words using ldr. At the end of the NTT−1, each coefficient of the
polynomial is multiplied with the constant 𝑛−1 followed by a Montgomery reduction.
We integrate this step into the last level of the NTT−1 in order to minimize load and
store operations. Furthermore, we observe that 𝑛−1 in Montgomery domain is 41 978
and, hence, less than 16-bits. Therefore, we do not need a full SBSMULL but can use
a simpler multiplication routine that multiplies a 32-bit word by the 16-bit constant
which requires 2 multiplication instructions and, hence, 2 cycles less.

Besides the NTT and NTT−1 we identify one other place where our compiler is
introducing smull and smlal instruction: The pointwise multiplication ∘. If either of
the multiplicands is secret, the pointwise multiplication must not use the variable time
instructions. We guarantee that by rewriting the pointwise multiplication in assembly
and making use of the Montgomery multiplication using SBSMULL and SBSMLAL like
in our butterfly operation in Algorithm 4.7 and Algorithm 4.8. In case both inputs
are considered public, we use the pointwise multiplication which was presented in
Section 4.3.
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4.5 Results

This section presents the performance results for our Dilithium implementations.
First, we present new speed records for the Dilithium NTT on the Cortex-M4 and first
results for the Dilithium, Kyber, and NewHope NTT in Section 4.5.1. We then present
results for the full Dilithium scheme on the Cortex-M4 (Section 4.5.2) and on the
Cortex-M3 (Section 4.5.3). Finally, we profile our implementations on the Cortex-M4
in Section 4.5.4.

Cortex-M4 setup. We benchmark all our Cortex-M4 implementations on an STM32-
F407 Discovery board, which features the STM32F407VG microcontroller. It was
clocked at 24 MHz to eliminate flash wait states when fetching instructions or data
from flash. For benchmarking the algorithm latency we used the SysTick counter.
Our build and benchmarking setup is based on pqm4 [PQM4] and benchmarking our
code within pqm4 gives the same performance results. After review of our work, we
have merged our code into pqm4, where it has remained until it was superseded by
the new work of Chapter 5.

Cortex-M3 setup. The Cortex-M3 measurements were done on an Arduino Due
board which uses the ATSAM3X8E microcontroller. The ATSAM chip was clocked
at 16 MHz, which results in a flash access time with zero wait-states. The algorithm
latencies were measured using the internal cycle counter (CYCCNT).

Compiler, random numbers, stack measurements, and Keccak. For all mea-
surements, we used the GCC compiler, version 10.2.0. For obtaining random num-
bers (e.g., 𝜌 and 𝐾), we use the hardware random number generators which are
available on both cores. The stack usage was measured by filling the memory with
sentinel values, executing the algorithm, and measuring the amount of sentinel-value
bytes that were overwritten during the execution. In the stack measurements, space
reserved for input and output values is not counted. For SHA3 and SHAKE, we use the
assembly-optimized implementation of the Keccak permutation from the eXtended
Keccak Code Package (XKCP).2 As it only uses ARMv7-M instructions, we use the same
implementation on both platforms.

2https://github.com/XKCP/XKCP
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Table 4.2: Performance results for NTT, NTT−1, and ∘ of Dilithium, Kyber, and
NewHope for the Cortex-M3 and the Cortex-M4 reported in clock cycles. The
Cortex-M3 (SAM3X8E) is running at 16MHz, and the Cortex-M4 (STM32F407) is
running at 24 MHz.

NTT NTT−1 ∘

Dilithiuma

[GKOS18] constant-time M4 10 701 11 662 –
This work constant-time M4 8 540 8 923 1 955

This work variable-time M3 19 347 21 006 4 899
This work constant-time M3 33 025 36 609 8 479

Kyberb
[ABCG20] constant-time M4 6 855 6 983 2 325
This work constant-time M3 10 819 12 994 4 773

NewHope1024c
[ABCG20] constant-time M4 68 131 51 231 6 229
This work constant-time M3 77 001 93 128 18 722

a 𝑛 = 256, 𝑞 = 8380417 (23 bits), 8 layer NTT/NTT−1
b 𝑛 = 256, 𝑞 = 3329 (12 bits), 7 layer NTT/NTT−1
c 𝑛 = 1024, 𝑞 = 12289 (14 bits), 10 layer NTT/NTT−1

4.5.1 NTT performance

In Table 4.2, we list the benchmarking results for the optimized NTT, NTT−1, and
pointwise multiplications (∘) implementations in Dilithium, Kyber, and NewHope1024
on the Cortex-M3 and Cortex-M4. For the Cortex-M4, we obtain a speedup of 20%
and 23% for the NTT and NTT−1 compared to [GKOS18; RGCB19]. This speedup
is mainly due to the switch to a signed representation of polynomials. We use this
representation throughout our newDilithium implementations, which saves a number
of additions of multiples of 𝑞. Additionally, we optimize the pointwise multiplication
(∘) which was not optimized in previous implementations.

In the Cortex-M3 results, we first benchmark the implementation also used on the
Cortex-M4 which uses smull and smlal. As smull and smlal, but also mla, need
significantly more cycles on the Cortex-M3 (respectively 3–5, 4–7, and 2 on the M3
vs. 1 on the Cortex-M4), the cycle counts for NTT, NTT−1, and ∘ increase between 2.3×
and 2.5×. Making those constant-time on the Cortex-M3 using SBSMULL and SBSMLAL

from Section 4.4.1 increases the number of cycles by a factor of 1.7.
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4.5.2 Cortex-M4 performance

Table 4.3: Performance results on the Cortex-M4 (STM32F407 at 24 MHz). Averaged
over 10 000 executions. From [RGCB19], “scenario 1” was used for comparison, as it
corresponds to the format that was used in this work.

Algorithm Params Work Speed [kcc]

Keygen

Dilithium2 This work 1 315
Dilithium3 [GKOS18] 2 320
Dilithium3 This work 2 013
Dilithium4 This work 2 837

Sign

Dilithium2 [RGCB19] 4 632
Dilithium2 This work 3 987
Dilithium3 [GKOS18] 8 348
Dilithium3 [RGCB19] 7 085
Dilithium3 This work 6 053
Dilithium4 [RGCB19] 7 061
Dilithium4 This work 6 001

Verify

Dilithium2 This work 1 259
Dilithium3 [GKOS18] 2 342
Dilithium3 This work 1 917
Dilithium4 This work 2 720

Table 4.3 lists the benchmarking results of our Dilithium implementation, together
with the cycle counts from the relevant related work. As signing time varies consid-
erably depending on the number of rejections, we performed 10 000 executions and
took the average of the resulting cycle counts. Compared to the [GKOS18] imple-
mentation, we obtain speedups of 13%, 27%, and 18% for key generation, signing, and
verification respectively for Dilithium3. When comparing to the [RGCB19, scenario
1] implementation, the acieved signing speedup is 15%.

4.5.3 Cortex-M3 performance

Table 4.4 presents our results for the Cortex-M3. The only other work implementing
(a modified version of) Dilithium on the Cortex-M3 is from Migliore, Gérard, Tibouchi,
and Fouque [MGTF19]. However, they do not report cycle counts on the Cortex-M3,
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Table 4.4: Performance results on the Cortex-M3 (SAM3X8E at 16 MHz). Averaged
over 10000 executions.

Algorithm/
strategy Params Speed [kcc]

KeyGen
Dilithium2 1 699
Dilithium3 2 562
Dilithium4 3 587

Sign
Dilithium2 7 115
Dilithium3 10 667
Dilithium4 10 031

Verify
Dilithium2 1 541
Dilithium3 2 321
Dilithium4 3 260

and we were not able to find their source code online. Therefore, we can unfortunately
not compare our results to theirs.

4.5.4 Profiling

To identify how much is still left to optimize in our implementation, we profiled the
implementations on the Cortex-M4. Table 4.5 contains the profiling results. We see
that the run-time of the scheme is mostly dominated by Keccak. The proportion of
cycles spent in hashing is up to 85% for key generation, 63% for signing, and 81% for
verification, which greatly limits the speedup achievable by further optimizing the
arithmetic of the scheme. This result clearly indicates that hardware acceleration
for SHA3 will essentially be a prerequisite for getting better-performing Dilithium
implementations when using Cortex-M4 or Cortex-M3 cores.

Only about 3.4% to 24.5% of cycles are spent in the NTT and inverse NTT. Another
3.9% to 13.2% of cycles are spent in the other assembly-optimized functions which
are pointwise multiplication, uniform sampling, and modular reduction. The time
spent in non-optimized C code is consistently relatively small. Hence, optimizing the
remaining code is not going to provide a large speedup. When looking at individual
functions of the non-optimized code, no function takes more than 3% of the total
run-time.
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Table 4.5: Profiling results on the Cortex-M4
Operation Keygen Sign Verify

Dilithium2

Keccak 81.4% 55.4% 76.6%
NTT 1.9% 7.2% 5.4%
NTT−1 2.7% 11.7% 2.8%
other asm 6.2% 9.3% 6.8%
not opt. 7.8% 16.3% 8.4%

Dilithium3

Keccak 82.8% 63.7% 79.1%
NTT 1.7% 6.8% 4.4%
NTT−1 2.2% 8.6% 2.3%
other asm 6.4% 8.4% 7.0%
not opt. 6.9% 12.5% 7.2%

Dilithium4

Keccak 84.2% 61.8% 80.9%
NTT 1.5% 6.2% 3.7%
NTT−1 1.9% 9.2% 1.9%
other asm 6.6% 10.0% 7.1%
not opt. 5.8% 12.9% 6.3%

4.A Kyber and NewHope on Cortex-M3

As a side-product of Section 4.4, we present implementations for the NTT and
NTT−1 operations for the primes 3329 and 12289. While those did not allow us
to speed up our Dilithium implementation further, they can be used to implement the
key-encapsulation mechanisms Kyber and NewHope on the Cortex-M3 in constant-
time. We report the results for these schemes here. Our implementations of both
Kyber and NewHope are based on the implementations by Alkim–Bilgin–Cenk-
–Gérard [ABCG20]. As those implementations make heavy use of instructions not
available on the Cortex-M3 (e.g., SIMD instructions like uadd16, or multiplication
instructions like smlabb), these are not directly functional on the Cortex-M3.

In addition to the NTT and NTT−1 implementations, we further port the other
assembly routines to Cortex-M3. For Kyber this includes polynomial addition, poly-
nomial subtraction, Barrett reduction, and base multiplication. For NewHope, we
use the same approach as [ABCG20], and use the Cooley–Tukey algorithm [CT65]
for NTT and the Gentleman–Sande algorithm [GS66] for NTT−1. Beside that, we
port the code for polynomial addition, pointwise multiplication, and bit-reversal to
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Table 4.6: Kyber and NewHope results on the Cortex-M3 (SAM3X8E at 16 MHz)
compared to the fastest Cortex-M4 implementation. Average of 100 executions.

Platform Keygen Encaps Decaps
[kcc] [kcc] [kcc]

Kyber512
[ABCG20] Cortex-M4 455 586 544
This work Cortex-M3 539 682 652

Kyber768
[ABCG20] Cortex-M4 864 1 033 970
This work Cortex-M3 1 012 1 194 1 145

Kyber1024
[ABCG20] Cortex-M4 1 405 1 606 1 526
This work Cortex-M3 1 636 1 853 1 793

NewHope1024-CCA
[ABCG20] Cortex-M4 1 157 1 675 1 587
This work Cortex-M3 1 239 1 921 1 888

Cortex-M3. We present the results for both NewHope and Kyber in Table 4.6. The
slow-down compared to the Cortex-M4 implementation is between 7% and 20% and
as such it is not as significant as for the Dilithium implementations. However, it does
demonstrate the limitations of the Cortex-M3.
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5.1 Introduction

At the point of writing, the NIST PQC standardization process is nearing the end of
its third round with announcements due in early 2022. Since Chapter 4, Dilithium
advanced to the finalists; its specification has been updated to a third version, and
its parameter sets have seen considerable modifications. Among the other finalists
in the competitions are four other lattice-based schemes including the three key-
encapsulation mechanisms (KEMs) Kyber, NTRU, and Saber and the competing digital
signature scheme Falcon. As there are only two other finalists (Classic McEliece
and Rainbow) that are not lattice-based, which both have excessively large keys, it
appears very likely that some of the lattice-based schemes are going to be selected
for standardization unless there are cryptanalytic breakthroughs.

It appears that the number-theoretic transforms are the main optimization tar-
get of all high-speed implementations of lattice-based crypto for the Cortex-M4. It
is either prescribed in the specification of Dilithium, Falcon [PFHK+22], and Ky-
ber [SABD+22], or maintains to be the fastest polynomial multiplication methods in
Saber, NTRU [CHKS+21], and NTRU Prime [ACCE+20].

Moreover, as we have seen in Chapter 4, the performance of the NTT greatly
determines the performance of a Dilithium implementation. More so, we expect that
when acceleration for the Keccak family (i.e., SHA3/SHAKE) becomes mainstream
in microcontrollers, most of the computation will be spent computing the (inverse)
NTT.

In this work, we leave Cortex-M3, and focus on improving Dilithium on the Cortex-
M4. We show that even though implementations have been improving for many
years, we can still significantly improve the involved arithmetic.
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5.1.1 Contributions

First, in Section 5.4, we observe that in Dilithium we can optimize the computation
of 𝑐s1 and 𝑐s2. Since both 𝑐 and s1,s2 have very small absolute values, we can switch
to a much smaller modulus 𝑞′ that allows efficient computation of the product. For
Dilithium2 and Dilithium5, we make use of the Fermat prime 𝑞′ = 257, which allows
using a particularly fast variant of the NTT called the Fermat number transform
(FNT), similar to [LMPR08] for SWIFFT. Furthermore, [LMPR08] implements an FNT
on an Intel processor while we implement the FNT on the Cortex-M4 and make use
of its barrel shifter. For Dilithium3, the FNT does not work, as its value 𝛽 = 196 is
too large. We instead use an incomplete NTT with 𝑞′ = 769 which is still much faster
than computing the NTT modulo the original Dilithium 𝑞. To best of our knowledge,
we are the first to propose using a smaller modulus for these multiplications within
Dilithium.

The new NTT modulo the smaller 𝑞′ = 769 is very similar to the NTT used in
Kyber (which uses 𝑞 = 3329). Therefore in Section 5.3, we can learn from techniques
from previous work on the Cortex-M4 optimizing Kyber, Saber, NTRU, and NTRU
Prime, and integrate them into both the “big” NTT (modulo the big 𝑞 that is used in
Dilithium), as well as the “small” NTTs (which is used in Kyber andDilithium3). While
the techniques are already known, they have so far not been applied to Dilithium.
This includes (1) the use of Cooley–Tukey butterflies for the inverse NTT previously
proposed for Saber in [ACCH+22]; (2) the use of floating point registers for caching
values in the NTT which was first proposed in the context of NTTs for NTRU Prime
in [ACCE+20]. This allows one to merge more layers of the NTT and reduce memory
access time for loading twiddle factors; and (3) we make use of the “asymmetric mul-
tiplication” proposed in [BHKY+21] which eliminates some redundant computations
in the base multiplication of the small NTTs at the cost of extra stack usage.

In Section 5.5, we present the resulting implementation. We measure the perfor-
mance results using the pqm4 [PQM4] framework and compare them to previous
work.

Code. The implementations of Kyber and Dilithium that are the result of this work
are in the public domain and can be obtained by following the instructions described
on page 10. The code is published and licensed under a CC0 copyright waiver.
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5.2 Preliminaries

5.2.1 Fermat Number Transform

The Fermat number transform (FNT) is a special case of NTT in that the modulus
is a Fermat number 𝐹𝑡 ∶= 22

𝑘
+ 1. It was introduced in [SS71] for large integer

multiplications and in [AB74; AB75] for digital convolutions. In this chapter, we
implement FNT for negacyclic convolution. For arbitrary 𝐹𝑘 as the modulus, cyclic
transformations of sizes dividing 2𝑘+2 are supported [AB74; AB75]. For computing a
negacyclic transformation of size 𝑛 = 2𝑘+1 and 𝜁2𝑛 = √2, the first split becomes

ℤ𝐹𝑘[𝑋]/(𝑋 𝑛 − 22
𝑘
) ≅ℤ𝐹𝑡[𝑋]/(𝑋

𝑛
2 − 22

𝑘−1
) × ℤ𝐹𝑡[𝑋]/(𝑋

𝑛
2 + 22

𝑘−1
)

=ℤ𝐹𝑡[𝑋]/(𝑋
𝑛
2 − 22

𝑘−1
) × ℤ𝐹𝑡[𝑋]/(𝑋

𝑛
2 − 22

𝑘−1(1+2)).

After applying 𝑘 layers, all of the polynomial rings are of the form ℤ𝐹𝑡[𝑥]/(𝑋
𝑛
2𝑘 − 2𝑗)

where 𝑗 is an odd number. Since 𝜁 22𝑛 = 2, we can apply one more split. Furthermore, if
𝐹𝑘 is a prime, then we can compute cyclic transformations of sizes up to 22

𝑘
= 𝐹𝑘 − 1

and negacyclic transformations up to 22
𝑘−1. Since the twiddles in initial 𝑘 layers are

powers of two, we can multiply with the twiddles using shift operations which is
much cheaper than explicit multiplications on many platforms. Note that the only
known prime Fermat numbers are 𝐹0 = 3, 𝐹1 = 5, 𝐹2 = 17, 𝐹3 = 257, 𝐹4 = 65 537. Out
of those, only 𝐹3 and 𝐹4 appear promising for the use in Dilithium. They allow to
compute 3 or 4 layers using only shifts.

5.3 Improvements to the NTT

5.3.1 FPU registers & improved layer merging

In the first six layers of the Dilithium NTT, each time 7 twiddle factors are required
and re-used multiple times throughout the iterations. By using the floating-point
registers for caching the twiddle factors, the number of cycles for memory loads are
reduced. This technique has been proven to be beneficial in past work [ACCE+20;
ACCH+22; CHKS+21]. In our implementations, we load the 7 twiddle factors into 7
floating-point registers once with vldm instruction in 8 cycles. Then, in each iteration
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the twiddle factors are fetched from the floating-point registers with vmov in a single
cycle each. This improves what we did in Chapter 4, where many twiddle-factors
take two cycles to load. For the last two layers, it is not beneficial to make use of the
floating point registers as none of the twiddle factors are re-used.

Aside from reducing the amount of cycles used to load the twiddle factors in the
NTT, the usage of the FPU registers reduces the pressure on the Cortex-M4 general-
purpose registers. Therefore, we can improve the merging pattern of Chapter 4, where
we merged the layers by layers 1–2, 3–4, 5–6, 7–8. Instead we implement the NTT
by merging layers 1–3 and 4–6 (while and 7–8 remains unchanged). By changing
the number of layer groups from 4 to 3 we reduce the number of coefficient load and
store operations with 25%.

5.3.2 Switch to CT-butterflies

In previous implementations of Kyber and Dilithium for the Arm Cortex-M4, the NTT
was always implemented using CT butterflies, while the inverseNTTwas implemented
using GS butterflies, which is a commonly seen pattern for implementations using the
NTT in general. Opposed to that, we implement the inverse NTT using CT butterflies
to limit the coefficients’ growths, as for example suggested in [Sei18, Section 2.1] or
implemented for Saber in [ACCH+22]. In the Dilithium NTT, this completely removes
the need for any additional intermediate coefficient reductions. Using CT butterflies
for the inverse NTT requires to do additional twisting during the computation of the
last layer, but the total number of multiplications does generally not increase because
multiplications in the same amount can be omitted during the butterfly operations
(“light butterflies”).

Further, we make use of a technique introduced in [ACCH+22, Appendix D] which
computes light butterflies with one less Montgomery reduction.

5.4 Small NTTs for Dilithium

In the signature generation of Dilithium, we recall that the polynomial 𝑐 consists of 𝜏
coefficients that are ±1s and 256 − 𝜏 coefficients that are 0, and all polynomials in s1
and s2 consist of coefficients in [−𝜂, 𝜂]. The absolute values of the coefficients in 𝑐s1
and 𝑐s2 are bounded by 𝜏 ⋅ 𝜂 = 𝛽, and the computation can be regarded as in ℤ𝑞′ for
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𝑞′ > 2𝛽 [CHKS+21, Section 2.4.6]. As far as we know, all previous implementations
choose 𝑞′ = 8380417 and employ the NTT defined for Dilithium. However, since
only the correct 𝑐s1 and 𝑐s2 are required, there is some freedom for choosing 𝑞′. The
bound 𝛽 is {78,196,120} for Dilithium{2,3,5} respectively. Consequently, we choose
the Fermat number 𝑞′ = 𝐹3 = 257 for Dilithium2 and Dilithium5, and 𝑞′ = 769 for
Dilithium3. Alternatively, one can also re-use the Kyber prime 𝑞′ = 3329 for any of
the parameters in case re-using the code is of interest. We have also experimented
with the Fermat number 𝑞′ = 𝐹4 = 65537 for Dilithium3. However, this did not result
in in a speedup compared to 𝑞′ = 769.

5.4.1 FNT for Dilithium2 and Dilithium5

For 𝑞′ = 257 = 28 + 1, we have FNT defined over ℤ257[𝑋]/(𝑋 256 + 1). We implement
the forward transformation with 7 layers of CT butterflies. Since the input coefficients
for 𝑐, s1, and s2 are at most in [−𝜂, 𝜂], we only need very few reductions. Recall
that a CT butterfly maps (𝑎, 𝑏) to (𝑎 + 𝜔𝑏, 𝑎 − 𝜔𝑏) (where 𝜔 is the twiddle factor),
so we can implement it with mla and mls. Furthermore, we can also take a closer
look at the initial layers. Since −1 ≡ 28 (mod 257), the first layer can be written
as ℤ257[𝑋]/(𝑋 256 + 1) ≅ ℤ257[𝑋]/(𝑋 128 − 24) × ℤ257[𝑋]/(𝑋 128 + 24) and the corre-
sponding CT butterfly maps (𝑎, 𝑏) to (𝑎 + 24𝑏, 𝑎 − 24𝑏). We denote such computation
as CT_FNT(𝑎, 𝑏, 4). Notice that without loading twiddle factors, we can implement
CT_FNT(𝑎, 𝑏, logW) efficiently using the barrel shifter as illustrated in Algorithm 5.2.

Algorithm 5.1: CT butterfly with small 𝜔
Input: (a, b) = (𝑎, 𝑏)
Output: (aout, bout) = (𝑎 + 𝜔𝑏, 𝑎 − 𝜔𝑏)
1: mla aout, b, 𝜔, a
2: mls bout, b, 𝜔, a

Let FNT −1 be the inverse of FNT. We first observe that the inverse of 2𝑘 can
be written as 2−𝑘 ≡ 216−𝑘 ≡ −28−𝑘 (mod 28 + 1). There are two places where we
need to multiply by an inverse of a power of two: (i) the inverses corresponded
to the butterflies with 𝜔 = 2logW in CT_FNT, and (ii) the scaling by 128−1 at the
end of FNT −1. We denote CT_iFNT(𝑎, 𝑏, logW) as the function mapping (𝑎, 𝑏) to
(𝑎 − 2logW𝑏, 𝑎 + 2logW𝑏) = (𝑎 + 28+logW𝑏, 𝑎 − 28+logW𝑏) and implement it with the barrel
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shifter as shown in Algorithm 5.3. Clearly, if CT_FNT(𝑎, 𝑏, 𝑘) computes (𝑎+2𝑘𝑏, 𝑎−2𝑘𝑏),
then CT_iFNT(𝑎, 𝑏, 8 − 𝑘) computes (𝑎 + 2−𝑘𝑏, 𝑎 − 2−𝑘𝑏) which can be used in FNT −1.
We compute FNT −1 with four layers of GS butterflies followed by three layers of CT
butterflies. During the GS butterflies, since the twiddle factors are also very small,
we can replace some of the mul, add, and sub with mla and mls. For CT butterflies,
since the twiddle factors are powers of two, we implement them with Algorithm 5.3.
Lastly, at the end of CT butterflies, we merge the twisting by powers of two with the
multiplication by 128−1.

Algorithm 5.2: CT_FNT(𝑎, 𝑏, logW)
input: (a, b) = (𝑎, 𝑏)
output: (a, b) = (𝑎 + 2logW𝑏, 𝑎 − 2logW𝑏)
1: add a, a, b, lsl #logW
2: sub b, a, b, lsl #(logW+1)

Algorithm 5.3: CT_iFNT(𝑎, 𝑏, logW)
input: (a, b) = (𝑎, 𝑏)
output: (a, b) = (𝑎 − 2logW𝑏, 𝑎 + 2logW𝑏)
1: sub a, a, b, lsl #logW
2: add b, a, b, lsl #(logW+1)

5.4.2 NTT over 769 for Dilithium3

For Dilithium3, since the maximum absolute value of 𝑐s1 and 𝑐s2 is bounded by
𝛽 = 4 ⋅ 49 = 196, we cannot use 𝑞′ = 257 < 2 ⋅ 196. We therefore choose 𝑞′ = 769,
which is the next prime for which a 256th primitive root of unity exists. We use the
16-bit NTT and NTT−1 from Kyber ([AHKS22, Section 3.1]), but we remove most of
the Barrett reductions.

In the NTT, we do not need any intermediate Barrett reductions. Moreover, since
we are using a 16-bit NTT for computing 𝑐s1 and 𝑐s2, we can remove the Barrett
reductions at the end and allow elements growing up to 7𝑞′ in absolute value.

For theNTT−1, replacing with 𝑞′ = 769 allows us to postpone the Barrett reductions
by one layer and cut the number of Barrett reductions by half. At the end ofNTT−1, we
replace the 16-bit Montgomery multiplication with straight multiplication and 32-bit
Barrett reduction. By using 32-bit Barrett reduction, the result is within [−384, 384] if
the product is in [−113025697, 113025697]. Since log2(

113025697
384 ) ≈ 18.17, we derive

values in [−384, 384] by applying 32-bit Barrett reduction to the product of any
signed 16-bit value and any constant from [−384, 384]. The downside for using 32-bit
Barrett reduction is a slightly higher register pressure, but overall it is more favorable
because we don’t need to reduce them again. This is different from the 16-bit NTT
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in [ACCH+22]. They implemented the twist with Montgomery multiplication and
then reduced the result to [−384, 384] with an additional 32-bit Barrett reduction.

5.4.3 Asymmetric Multiplication

In Dilithium, 𝑐s1 and 𝑐s2 are computed as NTT−1(NTT(𝑐) ∘ NTT(sx)). During each
rejection-sampling loop s1 and s2 remain unchanged, so usually their NTT represen-
tation is precomputed before entering the rejection-sampling loop.

The new small-𝑞′ NTTs from Section 5.4, are incomplete, i.e., 7 instead of 8 layers
are computed, and therefore the product of two polynomials inside NTT-domain
�̂� = ̂𝑐 ∘ ̂𝑠 consists of 128 2×2 schoolbook multiplications. For computing �̂�2𝑖+ �̂�2𝑖+1𝑋 =
( ̂𝑐2𝑖 + ̂𝑐2𝑖+1𝑋)( ̂𝑠2𝑖 + ̂𝑠2𝑖+1𝑋) mod (𝑋 2 − 𝜔𝑖), we have �̂�2𝑖 = ̂𝑐2𝑖 ̂𝑠2𝑖 + ̂𝑐2𝑖+1 ̂𝑠2𝑖+1𝜔𝑖 and
�̂�2𝑖+1 = ̂𝑐2𝑖 ̂𝑠2𝑖+1 + ̂𝑠2𝑖 ̂𝑐2𝑖+1 (where 𝜔𝑖 is the relevant twiddle factor).

The computation of 𝑐s1 and 𝑐s2 visits ℓ + 𝑘 polynomials in s1, s2, which means that
the computation of ̂𝑐2𝑖+1𝜔𝑖 (or the computation of ̂𝑠2𝑖+1𝜔𝑖) is repeated ℓ + 𝑘 times. This
can be avoided by caching the intermediate results of ̂𝑐2𝑖+1𝜔𝑖 in a separate vector
̂𝑐′ [BHKY+21, Section 4.2].

5.5 Results

Our benchmarking setup is based on pqm4 [PQM4] and follows the methodology from
Section 2.6.2. During the benchmarks, we clock the microcontroller at 24MHz in order
to avoid wait states during memory operations. We compile the code using arm-none-
eabi-gcc version 10.2.1 with the -O3 option. Regarding the Keccak implementation,
we make use of the code provided in pqm4. For the randomness generation we rely
on the microcontroller’s hardware rng.

We compare our implementations of Dilithium{2,3} to the code in pqm4 which is
based on [GKS21] (i.e., Chapter 4). For Dilithium5, pqm4 does not currently have an
implementation due to a lack of stack space. We apply some of the stack optimizations
of [GKS21] to our implementations, especially to make Dilithium5 work as well. It
is important to note that the parameters of Dilithium were changed at the start of
the third round of the NISTPQC competition. The numbers presented here reflect
the round 3 versions contained in pqm4. Those are optimizations from the original
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papers ported to the third round parameters. The performance results for the full
schemes do not match the original publications.

5.5.1 Performance of NTT-related functions

In Table 5.1, we present the cycle counts for the transformations we deploy in our
implementation of Dilithium. We achieve a speedup of 5.2% for the Dilithium NTT,
and 5.7% for the NTT−1. For the small NTTs the metric we are optimizing is (𝑘 +
𝑙) ⋅ NTT + #reps ⋅ (NTT + (𝑘 + 𝑙) ⋅ (basemul + NTT−1)). As most of the small NTT
are computed outside of the loop, we moved some of the reductions into the NTT
resulting in a faster basemul. Note that for 𝑞 = 257 and 𝑞 = 769 the NTT and NTT−1

have very close performance, but the basemul differs. This results in the FNT being
advantageous for Dilithium2 and Dilithium5. For (basemul + NTT−1), we achieve
a speedup of 37.6% for 𝑞 = 257, and 33.1% for 𝑞 = 769 compared to 𝑞 = 8380417
from [GKS21]. We also compare our 𝑞 = 769 implementation to an existing one
by [ACCH+22], because theoretically, their 6-layer approach could also be used as
well. Since the computation is dominated by (basemul + NTT−1), we find that our
7-layer approach is faster. We also carefully examine the code by [ACCH+22], and
find that the last 32-bit Barrett reduction is performed outside the reported NTT−1,
so the speedup is more.

Table 5.1: Cycle counts for transformation operations of Kyber and Dilithium. NTT
andNTT−1 correspond to the schemes default transformations, i.e., 𝑞 = 3329 for Kyber
and 𝑞 = 8380417 for Dilithium. The NTT with 𝑞 = 257 is deployed for Dilithium2 and
Dilithium5, and the NTT with 𝑞 = 769 is used for Dilithium3.

prime implementation NTT NTT−1 basemul

Kyber 𝑞 = 3329 [ABCG20] 6 852 6 979 2 317
[AHKS22]a 5 992 5 491 1 613b

Dilithium

𝑞 = 8380417 [GKS21] 8 540 8 923 1 955
This work 8 093 8 415 1 955

𝑞 = 257 This work 5 524 5 563 1 225

𝑞 = 769 [ACCH+22] (6-layer) 4 852 4 817 2 966
This work 5 200 5 537 1 740

a Result from the published paper corresponding to this chapter.
b Asymmetric basemul as used in the IP (enc). As the basemul in the MVP and IP consists of individual

function calls, the cycle count is not straightforward to measure.
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5.5.2 Performance of the full scheme

Table 5.2 contains the speed performance results for Dilithium. We achieve consistent
speedups for all parameter sets. The absolute savings due to our optimizations are
clearly seen, particularly in signing. The speedup for signing ranges from 1.5% to
5.6%.

In relative terms, the impact of our optimizations on the scheme seems relatively
small compared to the speedups we gain for the polynomial arithmetic. This is
due to dominance of the hashing operations as thoroughly analyzed in previous
work [PQM4].

Table 5.2: Cycle counts and stack usage for Dilithium. K, S, and V correspond to the
key generation, signature generation, and signature verification. Cycle counts are
averaged over 10 000 executions.

implementation
Dilithium2 Dilithium3 Dilithium5

kcc stack [kB] kcc stack [kB] kcc stack [kB]

pqm4, [GKS21]
K 1 602 38 2 835 61 4 836 98
S 4 336 49 6 721 74 9 037 115
V 1 579 36 2 700 58 4 718 93

This work
K 1 596 8 508 2 827 9 540 4 829 11 696
S 4 093 49 6 623 69 8 803 116
V 1 572 36 2 692 58 4 707 93
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6 Dilithium for
memory-constrained devices

6.1 Introduction

Dilithium signing has two main practical drawbacks for embedded devices. The
first one is the variable signing time, which follows a geometric distribution. When
using the parameter set targeting NIST security level 3, the probability that the
signing time is more than twice the expected average is approximately 14 percent.
This is significant and will have a real impact on many performance requirements
for various use-cases. The second drawback relates to the memory requirements
which are significantly higher for virtually all PQC schemes compared to the classical
digital signature counterparts. This can not only attributed to relatively large key
and signature sizes, but also heavy use of stack space for the storage of intermediate
data. For example, the embedded benchmarking platform pqm4 [KRSS19; PQM4]
(which executes on the Arm Cortex-M4) initially reported memory requirements
for Dilithium in the range of 50–100 KiB for the original reference as well as the
optimized implementations.

Dilithium has received a significant amount of attention from the cryptographic
community. One direction of study comes from an applied cryptographic engineering
perspective: how can one realize efficient implementations in practice for a selected
target platform. Often the single most important optimization criterion is latency:
the algorithm needs to execute as fast as possible, at the possible expense of other im-
portant metrics. Examples include the AVX2-based implementations from [DKLL+18]
and [FK19]; or the implementation from [RGCB19], which requires up to 175 KiB of
memory; or the implementations from Chapters 4 and 5.

Instead, in this chapter we target platforms that have significantly less memory and
computational power. Typical examples are platforms which are based on Arm Cortex-
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M0(+) cores. Such platforms are typical for a large family of IoT applications. Products
in this range include the LPC800 series by NXP (4–16 KiB of SRAM), STM32F0 by
ST (4–32 KiB of SRAM), and the XMC1000 by Infineon (16 KiB of SRAM). It is clear
that PQC implementations with memory requirements of well over 50 KiB do not
fit on these platforms and will not be able to sign nor verify digital post-quantum
signatures.

In this chapter we investigate how to approach the challenge of trimming down
the memory usage of the Dilithium algorithm. We intend to find out whether it is
possible to execute Dilithium on such memory-constrained devices that often have
up to 8 KiB of SRAM and, if so, which performance penalty is incurred.

Contribution. First, in Section 6.2, we present various high-level memory consump-
tion and speed trade-offs for the signing procedure of Dilithium. Due to the iterative
nature of the signing procedure, there exist interesting implementation choices. We
implement each trade-off into the implementation presented in [GKS21] and present
the resulting stack usages and cycle counts. In the second part, we select the most
memory-economical strategy and continue to consider and apply multiple low-level
tradeoffs, and assess how far we can (reasonably) go with trimming down the memory
usage. In particular, in Sections 6.4 and 6.5 we come up with methods to reduce the
amount of memory needed to store the w vector and the amount of memory needed
to compute 𝑐 ⋅ s1, 𝑐 ⋅ s2, and 𝑐 ⋅ t0. For all operations (KeyGen, Sign, and Verify), we
propose an efficient allocation of the variables used during the algorithm. We present
a new pure-C implementation for Dilithium in which the techniques are applied,
which is optimized only low-memory usage. Then in Section 6.6, we measure the
achieved memory usage and the impact on the performance of the algorithm on the
Cortex-M4 platform using the pqm4 [PQM4] framework.

6.2 Basic time-memory trade-offs

Depending on the programmer’s requirements, there are multiple ways in which we
can implement Dilithium signing, each with their own tradeoffs.

For microcontroller implementations of Dilithium the main challenge is that com-
puting A is expensive since it involves many calls to SHAKE256 which is relatively
slow in software. Also, A is used multiple times during the signing procedure. Conse-
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quently, we either have to store the complete matrix A in RAM or flash, or incur the
cost of having to recompute it during each loop iteration.

In order to explore this time-memory tradeoff, we look at the signing operation
using three different strategies. In the first strategy, we refuse to recompute A during
the signing operation and instead store it in flash. The second strategy describes the
more traditional implementation of Dilithium, expanding A once during each signing
operation before entering the rejection-sampling loop. The third case describes the
situation wherein we are highly constrained in flash and SRAM size, but have ample
performance budget. In this strategy, we save the amount of memory needed by
computing both A and y on the fly.

Although the algorithm’s intermediate values can be stored anywhere in the RAM,
to keep it simple, we will consider that all variables are stored on the stack.

6.2.1 Strategy 1: A in flash

In Dilithium signing, the values A, ŝ1, ŝ2, and t̂0 depend only on the Dilithium key pair.
Therefore, instead of computing these values during signing, we can compute these
values as part of the key generation. We assume that the platform has some kind of
non-volatile storage that is large enough (and secure enough1) to store these extra
values. Then, during the signature generation algorithm, instead of passing in sk (as
described in line 9 of Algorithm 3.17), we pass a larger struct that also contains the
precomputed values. These precomputed values (A, ŝ1, ŝ2 and t̂0) add up to 𝑘 ⋅ ℓ+2𝑘 +ℓ
(with 𝑘, ℓ as listed in Table 3.1) polynomials that have to be stored extra. In the case of
NIST round-3 Dilithium3, this amounts to 47 KiB of extra flash space as each Dilithium
polynomial requires 1 KiB when stored uncompressed.

Because these four values are now stored separately, we do not have to compute
(and store) them anymore during the signature generation. Thus, this strategy will
save a considerable amount of SRAM, in exchange for (relatively cheap) flash space.
Furthermore, in the absence of hardware-accelerated SHAKE256, generating A is a
relatively expensive step in the signature-generation process. Having A stored in
flash will speed up the overall performance of generating signatures. Hence, we think
that this strategy will be the most favored to be deployed in a real-world small-devices
environment.

1A, and t̂0 need to be integrity-protected; ŝ1, and ŝ2 need to remain secret and integrity-protected.
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6.2.2 Strategy 2: A in SRAM

When there is enough SRAM available on the device, we opt for the “traditional”
implementation of the signature generation algorithm. That is, we follow the specifi-
cation closely and implement signature generation following the general structure of
the Sign function Algorithm 3.17. Apart from some space for storing intermediate
values, we will need to allocate

• 4𝑘 polynomial slots for storing t̂0, ŝ2, w, w1;

• (𝑘 + 3)ℓ polynomial slots for storing A, ŝ1, y and ŷ; and

• 1 polynomial slot for storing ̂𝑐.

This adds up to a pretty high lower bound of 𝑘 ⋅ ℓ + 4𝑘 + 3ℓ + 1 KiB of necessary stack
space, e.g., 70 KiB for Dilithium3.

6.2.3 Strategy 3: streaming A and y

For the last strategy we considered the situation, wherein we optimize stack usage
without using extra long-term storage for precomputed values. In the signing imple-
mentation, we optimize exclusively for stack usage. We only intend to find the lower
bound of the needed stack space.

In contrast to the other strategies, we do not store any complete copies of A and
y. Instead, we regenerate every element of A and y on the fly when we compute
elements of w (in line 18 of Algorithm 3.17). Because we do not retain y after this
step, we regenerate it again later (in line 23 of Algorithm 3.17). Relative to strategy 2,
this saves us 𝑘 ⋅ ℓ polynomials of space for A, and another ℓ polynomials for y.

When we look further into stack-optimizing the signing algorithm, we find that
the main bottleneck in terms of stack usage is the overlapping lifetimes of w and ̂𝑐.
In lines 23 and 28 of Algorithm 3.17, the values r1, r0 and h all depend on both w
and ̂𝑐. However, in lines 20 to 21 we also need the complete value of w1 (and thus w)
to compute ̂𝑐. Therefore, we conclude that we either have to store w and ̂𝑐 both at
the same time; or we have to recompute every element of w on the fly when we are
computing r0 in line 23, and when we are constructing the hint h in line 28.

In order to recompute elements ofw, we would have to do the matrix multiplication
NTT−1(Â ∘ NTT(y)) all over again, including the complete regenerating of A and y.
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The performance cost of this optimization would be at least a factor 2, so we chose to
not do this. Instead we accept that w and ̂𝑐 both need to be stored at the same time.

6.2.4 Splitting signature generation in an offline and online
phase

To speed up the Dilithium signing process even more, one can choose to split the
signature generation in an offline and online phase, where the offline phase can already
be performed before the message to be signed is known. The general idea of using an
offline/online phase was introduced in 1989 by Even, Goldreich, and Micali [EGM96],
and was first proposed for usage in lattice-based signature schemes in [AYS15]. It
has also been used by Ravi, Gupta, Chattopadhyay, and Bhasin in [RGCB19, Section
4.1.2] to optimize the online latency of Dilithium signing.

However for Dilithium, this optimization comes with a significant cost. In their
paper, Ravi, Gupta, Chattopadhyay, and Bhasin describe that an additional 260 KiB
of space2 is needed to store the precomputed values for (NIST round-2) Dilithium3,
such that there is a 95% probability that at least one of the y values results in an
accepted signature. For the main target of the implementation from Chapter 4 (the
ATSAM3X8E), that would mean that more than half its flash space would already
be lost to storing these precomputed values. We think that, in the general case, the
improved signature-generation latency does not justify this kind of loss in available
flash space.

6.2.5 Results

Each of the strategies we incorporate into the NIST round-2 implementation of
Dilithium from Chapter 4. Then we evaluate the stack usage for Keygen, Sign, and
Verify for each different strategy. For our signing strategy 1, we need to pre-compute
A, ŝ1, ŝ2 and t̂0. We include this pre-computation in the key generation.

In Table 6.1, we show the considerable improvement in stack-space usage over
the previous works that implement the NIST round-2 version of Dilithium. We see
that signature verification needs only around 10 KiB of storage space (depending on
the Dilithium parameters), without incurring a performance hit. Furthermore, when

2See [RGCB19, Table 6]. Compute 300 − 34 = 266 KB ≈̂ 260 KiB.
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Dilithium is deployed on a device that has enough space to store A—either in SRAM
or in flash—we get a reasonable signature-generation latency.

However, in the same tables we see the cost of aggressively optimizing for stack
space (i.e., when applying strategy 3). On both platforms, we see really dispropor-
tionate cycle counts for signature generation, with a slowdown of 3.3× to 3.9× when
comparing to strategy 2. For Dilithium3, the strategy-3 signature generation takes
about 24 million cycles on the Cortex-M4. On slow devices (like common 16 MHz
microcontrollers), this latency grows into the order of seconds.

When comparing to the [RGCB19] implementation, our strategy 1 is similar to their
scenario 2, while our strategy 2 corresponds to their scenario 1. For both scenarios,
we achieve substantial speedups for all parameter sets ranging from 14% to 20%.
Unfortunately, [RGCB19] does not report the memory usage of their implementations,
so we cannot compare them. We can however observe that our speedup of strategy
1 compared to strategy 2 is consistent with that of [RGCB19], with speedups of
{21%–22%,22%–24%,33%–37%} for Dilithium{2,3,4} respectively.

6.3 Introducing advanced memory optimizations

In Section 6.2 we have looked at some time-memory tradeoffs that can be applied
to Dilithium, and how they perform for NIST round-2 Dilithium. Although the
analysis provides a good intuition into the general memory footprint of a Dilithium
implementation, it is still outdated, it only covers signature generation, and it does
not indicate any kind of lower bound. In the rest of this chapter, we will to complete
the work. While Section 6.2 only looked at the high-level structure of the Dilithium
signing algorithm, we will allow ourselves to step into primitive operations (such as
the NTT or pointwise multiplication) and modify them as part of the optimization
endeavour. Our goal is to determine if, using these optimizations, Dilithium can
be deployed to a device that only a minimal amount of memory. We will apply the
advanced memory optimization techniques and try to find that lower bound for the
latest version (i.e., NIST round 3) of Dilithium, using a new pure-C implementation of
Dilithium. We will measure the memory footprint of the implementation to determine
which variants of Dilithium can be executed in 8 KiB of RAM.
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Table 6.1: Performance result for NIST round-2 Dilithium on the Cortex-M4
(STM32F407 at 24 MHz). Averaged over 10 000 executions.

Algorithm/
strategy Params Work Speed [kcc] Stack [B]

KeyGen (1)
Dilithium2 This work 2 267 12 836c

Dilithium3 This work 3 545 15 916d

Dilithium4 This work 5 086 18 980e

KeyGen (2 & 3)

Dilithium2 This work 1 315 7 916
Dilithium3 [GKOS18] 2 320 50 488
Dilithium3 This work 2 013 8 940
Dilithium4 This work 2 837 9 964

Sign (1)

Dilithium2 [RGCB19, scen. 2]a 3 640 –
Dilithium2 This work 3 097 14 452c

Dilithium3 [RGCB19, scen. 2]a 5 495 –
Dilithium3 This work 4 578 17 660d

Dilithium4 [RGCB19, scen. 2]a 4 733 –
Dilithium4 This work 3 768 20 860e

Sign (2)

Dilithium2 [RGCB19, scen. 1]b 4 632 –
Dilithium2 This work 3 987 38 300
Dilithium3 [GKOS18] 8 348 86 568
Dilithium3 [RGCB19, scen. 1]b 7 085 –
Dilithium3 This work 6 053 52 756
Dilithium4 [RGCB19, scen. 1]b 7 061 –
Dilithium4 This work 6 001 69 276

Sign (3)
Dilithium2 This work 13 332 8 924
Dilithium3 This work 23 550 9 948
Dilithium4 This work 22 658 10 972

Verify

Dilithium2 This work 1 259 9 004
Dilithium3 [GKOS18] 2 342 54 800
Dilithium3 This work 1 917 10 068
Dilithium4 This work 2 720 11 084

a “Strategy 1” from Section 6.2.1 corresponds to “Scenario 2” in [RGCB19].
b “Strategy 2” from Section 6.2.2 corresponds to “Scenario 1” in [RGCB19].
c For Dilithium2 using stack strategy 1, an additional 23 632 bytes of flash space
are used for storing the precomputed values.

d For Dilithium3 using stack strategy 1, an additional 34 896 bytes of flash space
are used for storing the precomputed values.

e For Dilithium4 using stack strategy 1, an additional 48 208 bytes of flash space
are used for storing the precomputed values.
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6.4 Signature generation

As we have seen in Table 6.1, the digital signature generation in Dilithium requires a
significant amount of memory. For NIST round-2 Dilithium, the smallest implementa-
tion uses around 9–11 KiB of memory. Because of the increase of 𝑘 and ℓ in round 3
of the NIST competition, we expect these number to increase with the next version of
Dilithium. The fastest implementation reported on the benchmark results from pqm43

even requires approximately {49, 80, 116} KiB for Dilithium{2,3,5} respectively. In this
section we outline the proposed techniques to reduce the memory requirements of
the signing algorithm.

6.4.1 Streaming A and y

In Dilithium’s signature generation algorithm the matrix A requires 𝑘 ⋅ ℓ KiB: by far
the largest contributor to memory. As we follow “Strategy 3” (Section 6.2.3), we apply
the optimization to not generate the entire matrix A but only generate the elements
of A and y on-the-fly when they are needed.

Compared to the traditionally structured signing algorithm, the expected memory
reduction of this optimization is 𝑘 ⋅ ℓ KiB for A, and ℓ KiB for y; in practice this means
a saving of {20, 35, 63} KiB, for Dilithium{2,3,5} respectively. This optimization comes
at a performance price: the matrix A needs to be regenerated again from 𝜌 on every
iteration of the rejection-sampling loop. Moreover, y needs to be generated twice
during each iteration of the rejection-sampling loop; once for computing w = Ay,
and once for computing z = y+ 𝑐s1 later on. From the high-level analysis, we expect a
slowdown factor of around 3.3–3.9 compared to precomputing A and y if we assume
that both versions of Dilithium behave similarly.

6.4.2 Compressing w

Another significant contributor to the overall memory requirements is the vector w.
This could be resolved if one could compute and use a single element at a time during
the signature generation. Unfortunately, this is not possible due to the overlapping
lifetimes ofw and 𝑐, as identified in [GKS21] (Section 6.2). In line 20 of Algorithm 3.17,

3Accessed February 14, 2022, using revision 3bfbbfd3. The implementation in pqm4 is based
on [AHKS22].
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𝑐 is computed fromw1 = HighBits(w). On lines 23 and 28, the values r0 and h depend
on 𝑐 and the complete vector w. This means that either all elements of w must be
retained between computing 𝑐 and computing r0 and h, or w = Ay must be computed
twice during each iteration of the rejection-sampling loop. Recomputing the matrix-
vector multiplication in every loop iteration will roughly double the execution time
of the signing algorithm; although a viable direction to reduce memory we deemed
this performance impact too large. Instead, we explore the other option where all
elements of w have to be alive at the same time at the cost of storing 𝑘 polynomials.

One polynomial has 𝑛 = 256 coefficients, which are all bounded by 𝑞 = 223−213+1.
In previous works, implementations have always used 32-bit data types for storing
these coefficients. Instead, we use a compressed representation for storing w. Instead
of using 32-bit registers for storing w coefficients, the approach is to explicitly reduce
them modulo 𝑞, reducing each coefficient to 24 bits and next pack the 256 24-bit
coefficients into a 768-byte array. The (24-bit) compressed coefficients reduce the
amount of storage that is used for storing w from 𝑘 ⋅ 1024 bytes to 𝑘 ⋅ 768 bytes, which
results in a reduction of {1.0,1.5,2.0} KiB for Dilithium{2,3,5}, respectively. Packing
and unpacking coefficients of w adds a little overhead during the matrix-vector
multiplication.

It should be noted that one could compress each coefficient into 23 bits instead of
24 bits. This would save an additional 32 bytes per polynomial. However, working
with the 23-bit format (packing and unpacking) is significantly more cumbersome
and therefore slower compared to the 24-bit format for alignment reasons and the
need for more expensive reductions during the computation of w. This explains why
we compress to 24 bits for the results presented in Section 6.6.

6.4.3 Compressing 𝑐 ⋅ s1, 𝑐 ⋅ s2, and 𝑐 ⋅ t0

The multiplications of the challenge 𝑐 ∈ 𝐵𝜏 with the polynomials s1 ∈ 𝑆ℓ𝜂, s2 ∈ 𝑆𝑘𝜂 , and
t0 ∈ 𝑆𝑘2𝑑 , are typically computed using NTTs (see lines 22, 23 and 28 of Algorithm 3.17).
As the values of s1, s2 and t0 are static throughout a whole signing computation, it is
computationally most efficient to pre-compute the NTTs on all these elements, and
store ŝ1, ŝ2 and t̂0 in memory before entering the rejection-sampling loop. Avoiding
the storage of these elements reduces the total memory used by 2𝑘 + ℓ KiB; i.e.,
{12,17,23} KiB for Dilithium{2,3,5}, respectively. Indeed, this would naively imply a
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performance loss as the NTTs need to be computed several times (at least once for
each aborted signature). However, the routine using (inverse) NTTs on the fly needs
at least 1.75 KiB of space: 1 KiB is needed to compute the (inverse) NTT for one
operand, while 0.75 KiB is needed to store the other operand in (24-bit) compressed
form. We find that, for the computation of s1, s2 and t0, we do not necessarily need to
use the regular NTT. For most values involved, there is a lot of structure that can be
exploited. In the remainder of this section we discuss three different ideas to compute
𝑐 ⋅ s1, 𝑐 ⋅ s2 and 𝑐 ⋅ t0 with lower memory requirements than using regular NTTs.

Sparse polynomial multiplication. The most obvious choice for polynomial
multiplication is the schoolbook approach. At first glance, using schoolbook mul-
tiplication actually requires more memory compared to NTT-based multiplication
because one cannot do the multiplication in-place. However, when using schoolbook
multiplication, one does not need to store the right-hand-side operand polynomials
(s1, s2, and t0) completely. We can multiply their coefficients in a streaming fashion,
unpacking them “lazily” from the secret key. Apart from using a small buffer, we
have now removed the need to store any full element from s1, s2 and t0. Although
one still needs 1.0 KiB for the accumulator polynomial, only 68 bytes are required for
storing the challenge 𝑐; as well as a small buffer of 32 bytes, which is used to unpack
polynomial coefficients more efficiently from the secret key. This adds up to 1124
bytes total: a reduction of a factor 1.37 compared to using a regular (32-bit) NTT.

Furthermore, one can reduce the computational as well as the memory complexity
by exploiting the regular structure of the challenge 𝑐 [ABBK+16; WTJB+20]. Recall
that the challenge polynomial has exactly 𝜏 non-zero coefficients that are either ±1,
where 𝜏 ∈ {39, 49, 60} depending on the Dilithium parameter set. Therefore, when
multiplying 𝑐 with some other polynomial, one really only needs to multiply each
coefficient from the right-hand side operand with 𝜏 coefficients in 𝑐. Skipping the
multiplications with the zero-elements is not a security concern (e.g., from a timing
leakage perspective) since the challenge value 𝑐 is public.

Using this property, one can use a data structure for 𝑐 that allows for fast iteration
over all the non-zero coefficients. We use a single 64-bit datatype which indicates for
each of the 𝜏 non-zero positions whether it is a +1 or a −1; and an array of 𝜏 bytes
which stores positions of the non-zero coefficients. The benefit of storing the indices
of all non-zero coefficients, as opposed to storing a bit-string with bits set for each
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non-zero coefficient, is the fast iteration over the non-zero indices. If we store a bit
for every coefficient in 𝑐, we have to do a conditional addition/subtraction of the
coefficient in the other operand for every coefficient of 𝑐, i.e., 𝑛 times. By only storing
the non-zero indices, we only have to do the addition/subtraction 𝜏 times and avoid
computing any multiplications. Hence, this polynomial multiplication with 𝑐 can be
done using 𝜏 ⋅ 𝑛 additions or subtractions only.

Alternative Number Theoretic Transforms. When computing 𝑐 ⋅ s1 and 𝑐 ⋅ s2
one can use a different-sized NTT over a smaller prime as described in [AHKS22]
(Chapter 5). The idea is that all coefficients of both 𝑐s1 and 𝑐s2 are bounded by
±𝜏 ⋅ 𝜂 = ±𝛽. This allows computing the polynomial product with modulus 𝑞′ = 257
for Dilithium{2,5}, and 𝑞′ = 769 for Dilithium3. Since the coefficients in the product
are bounded by ±𝛽, they will not overflow when computing them modulo 𝑞′ ≥
2𝛽. In [AHKS22], this improves the performance of the NTT-based multiplications
because—with 𝑞′ = 257—some of the multiplications with twiddle factors become
cheaper. Moreover, [AHKS22] still uses 32-bit registers for all values, which provides
so much headroom that it eliminates the need for any intermediate Barrett reductions
in both NTT algorithms. However, the small-modulus NTTs also allows one to store
all coefficients in 16-bit variables; computing an NTT in half the amount of memory
at the cost of reintroducing the intermediate Barrett reductions. When using this
technique, the memory requirement of 𝑐 ⋅ s1 and 𝑐 ⋅ s2 is reduced to 1.0 KiB: 0.5 KiB
for the first operand and product, and another 0.5 KiB for the second operand.

Kronecker Substitution. By applying (generalizations of) Kronecker substitu-
tion [Har09; Kro82] to 𝑐 ⋅ s1 and 𝑐 ⋅ s2 one can reduce the polynomial multiplication
to the integer multiplications 𝑐(2𝜆) ⋅ s1(2𝜆) and 𝑐(2𝜆) ⋅ s2(2𝜆) modulo 2256𝜆 + 1. The
application of Kronecker substitution to lattice-based cryptography has been stud-
ied [AHHP+18; BRV22], but its use for 𝑐 ⋅ s1 and 𝑐 ⋅ s2 has not been considered yet. In
order to retrieve the coefficients of the resulting polynomial, we require that 2𝜆 ≥ 2𝛽.
This means we can select 𝜆 = 8 for Dilithium{2,5} and 𝜆 = 9 for Dilithium3, trans-
forming the full polynomial multiplication into a single 2048-bit multiplication and
a 2304-bit multiplication respectively. This requires 256 or 288 bytes for each of the
two inputs and result polynomials: assuming the result can overwrite one of the
inputs this means 512 or 576 bytes in total. Additionally one can use the more general
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Kronecker+method [BRV22] to improve the performance further (the optimal setting
depending on the platform).

Although Kronecker substitution works perfectly well on the regular central pro-
cessing unit it is particularly suitable for small systems that typically have dedicated
hardware to perform (public-key) cryptographic operations in a timely manner. For
RSA or elliptic-curve cryptography (ECC), such co-processors come in the form of
large-integer multipliers that are heavily optimized for performing integer (modular)
multiplications.

6.4.4 Variable Allocation

After applying the memory optimizations described above we analyzed efficient
memory allocation schemes during the Dilithium signature generation algorithm.
This showed that one can reuse the 1 KiB memory location that is used for doing
computations on non-compressed polynomials. On top of that, we need 128 bytes
for storing 𝜇 and 𝜌′; and 68 bytes for storing 𝑐, as described earlier ( ̃𝑐 is stored solely
in the output buffer). The complete memory allocation of the signature generation
algorithm is listed in Figure 6.1.

When looking at Figure 6.1 one can observe that the memory bottle-neck is shared
between multiple subroutines. We see no trivial way to further optimize the allocation
of variables inmemory. The only time-memory tradeoff that could still be performed is
to keep a single element ofw at a time. Following the observation from Section 6.2.3 we
dismiss this approach because it requires us to compute all elements ofw twice during
each iteration of the rejection sampling loop. This would not only require expanding
all elements of A and y twice, one would also need to recompute ŷ = NTT(y) and
w = NTT−1(ŵ). Because the matrix multiplication is already a dominating factor
in the signing algorithm, this optimization would likely result in another slowdown
by a factor two. Its gains in terms of memory consumption would be (𝑘 − 1) ⋅ 768
bytes, i.e., {2.25, 3.75, 5.25} KiB for Dilithium{2,3,5}, so it might be worthwhile if one
can compensate for or cope with this performance penalty.
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Figure 6.1: Memory allocation of the Dilithium signature generation algorithm. Hor-
izontal direction shows the memory slots that are used. Vertical direction shows
the progression in time. The boxes indicate the lifetimes of the variables used in
the algorithm. Dotted barriers denote that a variable is renamed, i.e., it is modified
in-place. Arrows in the algorithm indicate loops that iterate over some range, except
for the loop annotated by reject:, which indicates which code is repeated when a
signature in the Sign algorithm is aborted. All temporary values are denoted by a 𝑇𝑖.

6.4.5 Summary of optimizations

In this section we have described a large number of (possible) optimizations that
can be applied to optimize the signature generation algorithm. For clarity, let us
summarize which optimizations were selected for use in our implementation:

• we generate the elements of A and y on-the-fly, as described in Section 6.4.1;

• for storing w, we use the compressed format described in Section 6.4.2;

• for computing 𝑐 ⋅ t0, we use sparse polynomial multiplication (Section 6.4.3);

• for computing 𝑐 ⋅s1 and 𝑐 ⋅s2 we use the adapted small-modulus NTTs from Chap-
ter 5 (as described in Section 6.4.3); and

• we use the variable allocation described by Figure 6.1 and Section 6.4.4.

6.5 Dilithium key generation and signature
verification

Both the Dilithium key generation and verification algorithms are fundamentally
different from the signature algorithm with the most important difference being
that there is no rejection-sampling loop. Therefore, there is no performance ben-
efit to precomputing the matrix A in these algorithms, which already reduces the
memory requirement naturally. Moreover, in both KeyGen and Verify there are no
polynomials for which it makes sense to precompute the NTT representation to
speed-up the algorithms. This makes both algorithms significantly more lightweight
in terms of memory compared to the signature generation, even without any further
optimizations.
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It is common that the key generation algorithm is executed on the same device
where one performs the signature generation algorithm. Therefore, we do not attempt
to reduce the memory footprint of KeyGen to the maximum extent, but instead try and
minimize the memory footprint of max(KeyGen, Sign). In other words, we optimize
the memory use of KeyGen, until it is at least as low as the memory use of Sign which
we try to optimize as much as possible.

6.5.1 Key Generation

When following the same strategy for computing the multiplication A ⋅ s1 in the key
generation algorithm as in the signing algorithm one can already remove the need for
ℓ different memory slots for polynomials. Using this optimization in combination with
careful scheduling the other memory (see Figure 6.2) already means that all variables
used in KeyGen use less memory than the signature generation algorithm. Hence,
there is no reason to sacrifice any performance to optimize the KeyGen algorithm
further.

Let us outline some memory improvements for the interested reader who has
requirements to reduce the memory even further. One idea comes up from the
observation that one can transpose the order in which the multiplication in t =
As1 + s2 is performed. Recall that in the Sign algorithm, the lifetime of 𝑐 overlaps
with the lifetimes of all elements in w (where w is the output of the matrix-vector
multiplication) which limits the potential to reduce memory. However, in the KeyGen
algorithm there is no (equivalent to) 𝑐, i.e., there is no variable that causes the lifetimes
of the elements in t to overlap. Hence, the elements in t do not have to be alive at
the same time and can be computed in a streaming fashion. With this optimization
one can reduce the memory by (𝑘 − 1) KiB, saving {3.0, 4.5, 6.0} for Dilithium{2,3,5},
respectively.

6.5.2 Signature Verification

In the setting of the Dilithium signature verification algorithm we are interested
in minimizing the memory usage as much as possible. There are many embedded
applications that only use signature verification, e.g., secure boot implementations or
in the case of public-key infrastructures.
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The optimizations one can apply to the signature verification algorithm follow the
same pattern as those of Sign and KeyGen. In particular, it is possible to verify any
signature using only two slots for storing polynomials, of which one is 1.0 KiB and
one is 768 bytes, using the optimizations from Section 6.5.1. Apart from the 1.75 KiB
for storing two polynomials, one still needs twice the space for storing the SHA-3 state
(208 bytes) plus one compressed challenge polynomial 𝑐 (68 bytes). This sums up to a
minimum of 2276 bytes of required memory for such an approach in the Dilithium
verification algorithm. In contrast to the KeyGen and Sign algorithms, the memory
usage of the Verify algorithm is independent from any of the Dilithium parameters.

6.6 Results & discussion

Our implementation. Using the Dilithium reference implementation4 as a starting
point, we wrote a new implementation for Dilithium, in which we applied the tech-
niques described in Sections 6.4 and 6.5. Because we are only interested in validating
the memory reduction techniques and not focused on performance we have opted
to write a cross-platform implementation in pure C. Correspondingly, our imple-
mentation does not include any architecture-specific optimizations. Moreover, our
implementation as well as the implementations we compare against are not hardened
in any fashion except for the prevention of (cache-)timing attacks.

Our implementation introduces many new internal data types that are optimized for
a lower memory footprint; like compressed polynomials (with 24-bit coefficients and
16-bit coefficients) and the compressed challenge. We implemented the 𝑞′ ∈ {257, 769}
NTTs for 𝑐 ⋅ s1 and 𝑐 ⋅ s2 multiplications, and we implemented the schoolbook mul-
tiplication for the 𝑐 ⋅ t0 and 𝑐 ⋅ t1 multiplications. We improved the implementation
such that parts can be called in a streaming fashion. For example, the matrix-vector
multiplication and ExpandA routines have been merged into a single non-buffering
function; and almost all packing/unpacking functions have been refactored to allow
for (un)packing polynomials in small chunks. Because of the tight memory budget
we have removed some local stack allocations from all internal Dilithium routines.
Instead, one memory block is allocated on the stack in the root functions (i.e., di-

4https://github.com/pq-crystals/dilithium
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(ŵ

1 ) ′𝑖 ∶=
(ŵ
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lithium_keygen, dilithium_signature, and dilithium_verify) and passed to the
internal functions.

As opposed to the previous works that only support a single Dilithium variant at
a time, selected using C preprocessor macros at compile time, our implementation
integrates all variants at the same time, and the variant is selected by the user at
runtime as in typical in cryptographic software libraries.

Results. We integrated our implementation into a local fork of the benchmark-
ing framework pqm4 [PQM4].5 We compared the memory footprint and the exe-
cution times of our implementation to those of the Dilithium implementation in
PQClean [KSSW22], the Dilithium-round-3 updated port of [GKS21] in pqm4, and
the recent implementation results from [AHKS22].6

It should be noted that all of these implementations have different goals and imple-
mentation methods, so evaluating the benchmarking results is not as straightforward
as just comparing performance numbers. Firstly, the PQClean implementation has
been published as a “clean” implementation of Dilithium. Its main goal is to provide
an implementation of Dilithium, written purely in C, that works cross-platform and
follows best coding practices. It has been written with performance in mind and
ensures a running time independent of secret-key-related material. However, it does
not include any platform-optimized assembly code which has the potential to greatly
improve the performance. On the other side, there are the pqm4 ([GKS21]) and
[AHKS22] implementations. These implementations are specifically hand-crafted for
the Arm Cortex-M4 platform and are highly optimized for performance (i.e., reducing
the number of required cycles) and large parts of these implementations are written
in Armv7 assembly. We also include the “strategy 3” implementation from [GKS21]
(i.e., Section 6.2), but unfortunately it is hard to compare directly since that implemen-
tation is based on round-2 parameters of Dilithium which are significantly different
compared to the latest (round 3) ones. As an indication, the round-2 Dilithium3
memory usage of signature verification and generation using this strategy are in both
settings 10 KiB: significantly less compared to previous work but still too large for
the embedded devices we target in this chapter.

5Commit hash e47864b3, forked on 8 Oct 2021.
6As of early 2022, this implementation has replaced the port of [GKS21] in pqm4.
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Our implementation is designed with a different goal in mind: it is a cross-platform
C implementation that optimizes in the first place for memory usage to ensure it can
execute on memory-constrained (≤ 8KiB) platforms. It makes a significant amount of
sacrifices in terms of performance and does not contain any routines that are specially
optimized for the Cortex-M4 (the techniques presented are platform independent).
Therefore we expect the pqm4 implementation from [GKS21] (Chapter 4) and the
implementation from [AHKS22] (Chapter 5) to outperform this implementation on
Cortex-M4: we use a slower approach and a generic implementation. In order to
assess the impact of the proposed techniques we remove the optimized assembly
implementation from the equation and compare to the generic PQClean implementa-
tion. We include the performance figures of the other implementations for the sake
of completeness.

An overview of the results is provided in Table 6.2. The testing followed the method-
ology described in Section 2.6.2. We used the STM32F4 Discovery board, which is
based on the STM32F407 microcontroller. Our implementation was benchmarked
using the pqm4 framework. To obtain the cycle counts we measured 10 000 execu-
tions and computed the average. The results for the pqm4 ([GKS21]) and [AHKS22]
implementations are based on the results listed in [AHKS22]. The code was compiled
using GCC version 9.2.1,7 with optimization level -Os.

In Table 6.3 we have listed the code sizes for all the implementations that we
compare in Table 6.2. We have measured these code sizes using the same settings
as for the memory/performance measurements. Because the [GKS21] pqm4 and
the [AHKS22] implementations are optimized for speed, we have listed their code
sizes for the optimization levels -O3 and -Os. In these metrics, the contribution of
symmetric primitives—e.g., the size of the SHAKE code—has been excluded.

Discussion. The memory footprints reported in Table 6.2 for the presented tech-
niques are close to the lower bounds provided earlier. The discrepancy in memory
use is around 0.4 KiB of memory for all algorithms. The largest contributor to this
additional memory use is the execution of SHAKE. The SHAKE code, which has been
unadapted from the Dilithium reference implementation uses around 300 bytes of

7arm-none-eabi-gcc (15:9-2019-q4-0ubuntu1) 9.2.1 20191025 (release) [ARM/arm-9-
branch revision 277599]
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Table 6.3: Code sizes of the implementations from Table 6.2 expressed
in bytes. Opt-level denotes the optimization level that was used. Contri-
bution of Keccak and AES code is excluded from all implementations.
implementation opt-level Dilithium2 Dilithium3 Dilithium5

[GKS21] (pqm4) -O3 10 564 10 092 –a

[AHKS22] -O3 18 448 19 916 18 262
[GKS21] (pqm4) -Os 9 700 9 276 –a

[AHKS22] -Os 17 408 19 012 17 234
PQClean -Os 6 986 6 534 –b

This work -Os 10 091c 10 091c 10 091c

a Not reported by pqm4.
b Implementation disabled because the device does not have enough
RAM to support it.

c Implementation includes support for all Dilithium variants.

stack. The last 100 bytes are found in call-tree information and temporary buffers
used during the packing and unpacking of polynomials into bit-arrays.

Table 6.2 clearly shows that the proposed techniques pay off. The states of both
Dilithium2 and Dilithium3 for signature generation, verification and key generation
easily fit into 8 KiB. It should be noted that none of the other high-speed implementa-
tions can execute on devices even with 32 KiB of memory. The amount of headroom
arguably allows for plenty of other tasks to run on the device; 3.0 KiB in the case of
Dilithium2 and 1.4 KiB for Dilithium3. The memory footprint of Dilithium5 signing
just exceeds 8 KiB. For Verify, the memory footprint is reduced to 2.7 KiB.

This is of course only half of the story. The memory reduction techniques have
a clear impact on the performance of the scheme. When comparing cycle counts to
those of the PQClean implementation (which is the implementation most similar to
ours), one observes a factor 2.3–2.8 slowdown for Sign and a factor 1.8–2.0 slowdown
for Verify. For both algorithms, the difference in performance is due to the overhead
from the (24-bit) bit-packing operations in the matrix-vector multiplication, and
the slower schoolbook method for multiplying 𝑐t0. For Dilithium3 signing there is
some additional overhead, because the 𝑞′ = 769 NTTs are somewhat slower than the
𝑞′ = 257 NTTs in the other variants.

Optimization efforts from [GKS21] and [AHKS22] have lead to a 43%–44% reduction
of cycles in Sign compared to the PQClean implementation. Similarly, one can expect
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that future performance enhancements will be able to improve the performance of
our implementation of the memory reduction techniques as well. Depending on
the platform, integrating more optimized assembly implementations for SHAKE,
(inverse) NTT, and challenge multiplication could result in significant performance
gains. In particular, many of the values in the challenge multiplication are 8 bits, This
is suitable for parallel computation using SIMD instructions, which are not used in
our C-implementation.

More importantly, many of the memory-constrained devices come equipped with
dedicated cryptographic coprocessors for symmetric primitives (such as SHAKE) as
well as for big-number arithmetic. When one can make use of these coprocessors,
the execution times could be reduced drastically: especially because SHAKE remains
a dominating component of the Dilithium execution time as well as the polynomial
multiplication [BRV22].

Although the reduction of the run-time state has a big impact on the execution
speed of the algorithm, we see from the results in Table 6.3 that this is not the case
for the code size. The code for our new implementation is slightly bigger than the
PQClean code, but about the same size as the optimized implementations.8 Moreover,
we must take into account that our implementation supports all variants of Dilithium
at the same time, so a slight increase is actually expected.

6.7 Conclusion

Although there is considerable performance impact when implementing Dilithium
in a low-memory environment, we have shown that such low-memory Dilithium
implementations are feasible in practice. In particular, we broke the 8 KiB memory
barrier forDilithium2 andDilithium3. Dilithium5 uses a little bit more memory than 8
KiB, but we have shown that there are still time-memory tradeoffs that can be applied,
even though these tradeoffs are relatively expensive in terms of performance.

When earlier work (like [RGCB19]) was published, it was not clear whether Dilith-
ium was a scheme that could even be considered for memory-constrained devices.
Then [GKS21] showed that the Dilithium algorithms could reasonably fit into 16 KiB
of memory. In this chapter, we show that most variants of Dilithium can even fit

8It is clear that the handwritten assembly in the [GKS21] and [AHKS22] implementations—which is very
aggressively loop-unrolled—comes at a significant cost in code size.
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into 8 KiB without a very drastic impact on performance. More so, we reduced the
memory footprint for Dilithium verification to below 3 KiB. For memory-constrained
devices, storing Dilithium’s public keys and signatures has arguably become a bigger
challenge than storing its run-time state.
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7 Post-quantum secure boot on
vehicle network processors

7.1 Introduction

Up to this point in this thesis, we have only focused on the implementation of Dilithium.
In this chapter, we will look at the usage of Dilithium in larger embedded systems. In
embedded systems, one typical use for digital signatures is for verifying that the code
that runs on a device has not been tampered with. For example, firmware updates
are usually authenticated by the software vendor using digital signatures. Some
devices can also be configured to verify the firmware’s signature again during boot,
preventing the malicious modification of the code after the code is installed on the
device.

Because of this, these signatures serve as the basis of trust for any other applications
running on the system, and are critical for providing safety and security to automotive,
edge, industrial, and many other domains. For example, modern cars feature service-
oriented gateways that are responsible for transferring data between various vehicle
networks, handling over-the-air (OTA) updates, communicating with the cloud, etc.
For these kinds of devices, it is critical for the safety and security of a driver that they
are securely booted and updated.

7.1.1 Secure boot

The goal of secure boot is to guarantee integrity and authenticity of the software
running on a system. Although there are different ways in which to achieve this,
ultimately the confidence in a system leads back to a so-called Root of Trust (RoT).
For example, an RoT can consist of executable code and (hashes of) keys in Read-
Only Memory (ROM) that performs various initializations, verifies the authenticity
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of the firmware, and finally passes control to the (now authenticated) firmware.
The requirements on RoTs are well-documented by various organizations, e.g., see
TCG [CG19, Part 1 §9.5.5] or GlobalPlatform [GP18], and its implementation should
hold up against strong testing and certification (e.g., ISO 26262) requirements. In
particular, in order to prevent any of the ROM code being modified, or executable
instructions skipped altogether, the RoT should be protected against physical fault
attacks [BDL97; BS97].

Since both security requirements as well as cost of implementation for RoTs are
high, their design typically aims to provide the necessary security requirements with
minimal footprint. As such, in most modern systems the boot flow is not completed
when the ROM code passes on control. Instead, more advanced features are offloaded
to a (second-stage) boot loader, which is verified by ROM code and made responsible
for the remainder of the boot sequence. Of course, this boot loader can in turn
verify and advance control to the next stage, creating a chain of trust. In complex
ecosystems distinct parties can be responsible for the different stages in the chain:
while immutable hardware such as ROM needs to be established at manufacturing
time by a Tier-1 or Tier-2 supplier, second (or higher) stage boot loaders can rely
on memory that is programmed only later in the process by Original Equipment
Manufacturers (OEMs), for example. This chain can extend all the way to end users
running their Operating System (OS) of choice.

7.1.2 Post-quantum digital signatures for secure boot

As far as we are aware at the time of writing, all widely used and deployed ap-
proaches to realize digital signatures in the embedded space are either based on
elliptic curves [Kob87; Mil86] or RSA [RSA78]. As such, the well-known threat of
the realization of a quantum computer applies here as well: if large-scale quantum
computers are to become a reality, Shor’s algorithm [Sho94] will be able to recover
ECC/RSA private keys in polynomial time. In the context of automotive network
processors, such a development would allow an attacker to sign their own firmware
updates, and install their own (unauthorized) code on the device. Even though this
scenario might seem far away, cars will often operate on the road for multiple decades;
as such, their security measures have to be able to sustain decades of attacks. There-
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fore, we cannot delay evaluating the impact of using post-quantum cryptography for
their secure-boot setups.

7.1.3 Related work

Sanwald, Kaneti, Stöttinger, and Böhner performed a thorough investigation of se-
cure boot in the automotive domain [SKSB20]. Integration of post-quantum secure
key exchange and digital signature verification has been studied before. The main
investigations have been around hash-based signature schemes, since they have
already been standardized by NIST [NIST20b]. They come with some potential dis-
advantages of requiring to keep a state during signature generation. An impact
assessment of hash-based post-quantum secure schemes on secure boot is studied
by Kampanakis, Panburana, Curcio, and Shroff [KPCS20]. Hermelink, Pöppelmann,
Stöttinger, Wang, andWan perform an investigation into Authenticated Key Exchange
(AKE) combining XMSS and NewHope [HPSW+20], while Feritzmann, Vith, Flórez,
and Sepúlveda analyze lattice-based key encapsulation mechanisms (KEMs) for auto-
motive systems [FVFS21]. Also, Kumar, Gupta, Chattopadhyay, Kasper, Krauß and
Niederhagen [KGCK+20] investigate how hash-based schemes can be integrated into
a secure SoC platform around RISC-V cores and evaluated on an FPGA.

As far as we are aware, the integration of lattice-based schemes into the secure-boot
flow has been not investigated before. In this work, we focus on the NIST signature
finalist Dilithium. Dilithium is often considered for embedded applications due to its
favorable runtime and relatively small size, for example, the embedded implementation
from [GKOS18; RGCB19] and the improvements presented in Chapters 4 and 6.

7.1.4 Contribution

We investigate the practical impact of protecting the secure boot flow for vehicle
network processors against quantum attacks. This is realized by integrating the
Dilithium digital signature scheme into the secure boot process of the S32G platform.
As part of this work we created a fault-attack resistant (against single-targeted faults)
Dilithium signature verification algorithm, which uses significantly less memory
than the state-of-the-art. This implementation was integrated into the S32G HSE
secure boot flow (cf. Section 7.3). We have measured the latency of our Dilithium
verification algorithm in a regular setting and using pre-hashing with SHA256. Our
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results (Section 7.3.3) make it clear that the usage of post-quantum cryptography does
have an impact on the (one-time) installation time of an application image. However
after installation, the S32G uses a reference proof instead of verifying the original
signature, which means that the boot time is not affected by the signature scheme.
We evaluate these results and find that the impact is fairly minimal: a transition to
post-quantum secure boot can be considered practical for this application.

7.1.5 Organization

We begin with a description of the S32G automotive platform and its (secure) boot
flow in Section 7.2. In Section 7.2.2 we describe the process and results of integrating
Dilithium. Finally, we present our conclusions in Section 7.4.

7.2 S32G vehicle network processors

7.2.1 Platform description

In this work, we use the S32G vehicle network processor as the target platform for the
impact assessment of integrating post-quantum cryptography in the secure boot flow.
This high-end platform is developed by NXP Semiconductors and part of a larger S32
product family which includes the S32R, S32K and S32S and is designed to meet the
safety and security requirements in the automotive and industrial domains (i.e., compli-
ance with IEC 61508 [IEC10] and ASIL-D classification in ISO 26262 [ISO18]). Typical
uses include service-oriented gateways, domain controllers, vehicle computers and
safety processors. The S32G consists of a combination of microcontrollers (MCUs)
based on the Arm Cortex-M7, and microprocessors (MPUs) based on Arm Cortex-A53.
These are combined with several types of memory (SRAM, DRAM, NOR/NAND Flash)
and various hardware accelerators. Most notably, it contains a Hardware Security En-
gine (HSE) which supports both symmetric and (classical) asymmetric cryptography
accelerators, a random number generator, and dedicated secure memory. The HSE is
also powered by an Arm Cortex-M7 core and serves both as a secure environment
for host applications, as well as being responsible for (part of) the boot flow if secure
boot is enabled.
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The precise configuration depends on the choice of model: we deploy the S32G274A
which contains 3 Arm Cortex-M7 cores, 4 Arm Cortex-A53 cores, and 8 MB of system
RAM. Each of the MCUs runs in a delayed lockstep configuration at a maximum
frequency of 400 MHz and has 32 KB instruction and data caches. The MPUs are
configured as 2 clusters of 2 cores each running at a maximum frequency of 1 GHz.
Every core has access to 32 KB L1 instruction and data caches, while each cluster
shares another 512 KB of L2 cache. Optionally, the A53 clusters can be configured to
also run in a delayed lockstep setting, effectively removing one of the clusters from
an application’s point of view but increasing the fault tolerance.

7.2.2 Secure boot on the S32G274

The S32G274A provides two modes of startup, a normal start-up sequence (also
referred to as “normal boot”) and a secure start-up sequence (also referred to as
“secure boot”). The secure boot process involves a series of stages. In each stage, a
new piece of code is executed after passing all necessary checks for authenticity and
optionally decryption of the protected content. In case the authentication fails, the
related CPU subsystem remains in reset, potentially rendering the device inoperant,
or at least not operating as originally designed for the targeted application.

In the secure startup process, the S32G starts operating a trusted-boot stored
Read-Only Memory (ROM) firmware (BootROM), that is responsible for verifying,
decrypting, and loading the HSE Security firmware (HSE-FW) into HSE secure mem-
ory before handing over the control to it. Once HSE-FW is up and running, it is
responsible for initiating the next boot stage, by verifying and optionally decrypting
the Application (Bootloader), before starting the Application CPUs. The authen-
ticity check is based on cryptographic primitives. In particular, digital signatures
schemes that are supported for authenticating application images are RSA [RSA78]
with various padding schemes [PKCS198], ECDSA [SECG00], and EdDSA [BDLS+11;
NIST23b].

The HSE requires three essential components for the boot sequence, which need to
be installed before enabling secure boot. For example, this can be done by executing
an application that performs the installation via the normal boot sequence, or through
the serial interface. Firstly, any user keys (i.e., those not already in ROM) that are to be
used by theHSE-FW to check the authenticity of the application need to be provisioned.
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Secondly, the application images need to be installed in non-volatile memory. This
is done with the use of Secure Memory Regions (SMRs), which are regions in Non-
Volatile Memory (NVM) defined by an address, a length, and an (initial) proof of
authenticity (e.g., a digital signature linked to a previously provisioned key). Finally,
the user has to specify the Application CPUs for which SMRs require verification
before continuing with the boot flow (and which sanctions are applied on failure).
The Application (Bootloader) and the Application can be associated with one or more
SMRs. The HSE secure boot configuration can be locked by advancing the device
lifecycle, which disables any future changes to the configuration.

It should be noted that the above description is a very high-level view: in reality, the
S32G274A boot sequence is highly configurable and supports a multitude of options.
A particularly interesting one is the ability to use reference proofs of authenticity
for SMRs. On initial SMR installation, the HSE-FW will check the initial authenticity
proof that was stored in non-volatile memory (e.g., the digital signature). If the initial
authenticity proof verifies correctly, the HSE-FW computes a reference authenticity
proof that is stored internally in the HSE. As the application has already been authen-
ticated with an initial proof of authenticity, the requirements on the reference proof
are lighter. Therefore verification of the reference proof can be much faster than
the initial one. During secure boot, the HSE-FW only verifies the SMRs by checking
the reference proofs, significantly speeding up the boot procedure. The S32G also
supports runtime (periodically or on-demand) attestation, meaning that SMRs can be
verified (initial or reference) during the execution.

7.3 S32G274 Post-quantum Secure Boot

In Section 7.2.2 we summarized the S32G platform and its boot flow. In this section, we
describe our Dilithium implementation for the HSE core and how this was integrated
into the HSE-FW to support its signature verification in the boot flow. Finally, we
discuss the installation of the secure memory regions selecting features that are most
appropriate for our setting.
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7.3.1 Dilithium software

TheDilithium submission to the NIST standardization effort is accompanied by various
implementations [LDKL+20]. Some of the parameter sets for Dilithium have also been
integrated and optimized for pqm4: a testing and benchmarking framework for the
Arm Cortex-M4 [PQM4]. The implementations supported in pqm4 provide a good
overview of the state-of-the-art performance of the post-quantum algorithms within
some constraints related to the Arm Cortex-M4 platform. For example, the total
memory available is 112 + 16 KB (SRAM1 and SRAM2). Moreover, it should be noted
that these implementations ensure a runtime independent of any secret key material
but are not protected against active [BDL97; BS97] (faults) or passive [KJJ99] (side-
channel) attacks. For critical applications, such as secure boot on vehicle network
processors, protection against these advanced attacks is often a minimal requirement.

We implemented the Dilithium algorithms for all parameter sets from scratch and
ensured they comply with the proposed specification and pass the Known-Answer-
Tests provided in [LDKL+20]. Our main focus is on the signature verification since
this is the only functionality required in the secure boot flow. For verification the
protection against passive attacks is not relevant; a side-channel attack tries to deduce
information about the bits of the secret key material used during execution based
on, for instance, the observed power consumption of the device. However, no secret
key material is used during signature verification. Protection against fault attacks
is required since it would be trivial to force acceptance of a wrong signature by
introducing a well-targeted fault in the implementation. Our implementation includes
countermeasures against single-targeted fault attacks: this is achieved by both adding
countermeasures protecting the control flow as well as algorithmic checks to ensure
no steps are skipped or memory regions have been altered.

As can be observed from the pqm4 benchmarking framework, the stack consump-
tion of Dilithium is significantly larger compared to the classic public-key counterparts
(such as RSA and ECC). The stack requirement for signature verification for Dilithi-
um 3 reported by pqm4 is around 58 KB. Recent work [GKS21] has shown how to
reduce this stack to around 10 KB. Our fault attack resistant Dilithium verification
code requires less than 3KB of stack for all parameter sets. This is a huge improvement
over previous works: still, it is an order of magnitude larger compared to signature
verification based on elliptic curves.
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There are two variants of Dilithium specified in the supporting documentation: the
main version where symmetric primitives for matrix expansion are instantiated with
SHAKE, and a second version where AES is used. The latter was included mostly to
demonstrate the efficiency of Dilithium on platforms which do not have support for
SHAKE yet or have dedicated hardware support for AES. In this work we only focus
on the recommended variant using SHAKE. For the SHAKE implementation we use
(a slightly modified version of) the assembly code published in the eXtended Keccak
Code Package1 (XKCP).

7.3.2 Firmware integration

Given a functional Dilithium implementation, the next step is to update the HSE-
FW to support its use. This is made easy by the fact that the Dilithium signature
verification API (as mandated by NIST) is virtually identical to that of RSA and elliptic-
curve-based signature schemes. The main complications arise from the fact that the
memory use of Dilithium is higher, both in terms of key and signature size as well
as stack. However, keys still easily fit into the key catalog, while 3 KB stack can be
handled by the HSE. Hence we observed no significant obstacles in adding Dilithium
support to the boot flow.

In order to evaluate and benchmark the integration, we created a simple demo
application. For this purpose we require the compiled application images to be
accompanied by a Dilithium signature, for which we wrote a stand-alone command-
line tool. This tool was written in C, and was built around the avx2 implementation of
Dilithium from the CRYSTALS team.2 Using our signing tool, we pack the compiled
application code into a flash image, together with a Dilithium signature and the
public key under which the code was signed, and load it together with our demo
application image into flash. We also use the demo application as boot loader. On first
boot, when secure boot is still disabled, the demo application loads the Dilithium key
and signature into the HSE. Following the description in Section 7.2.2, it installs our
application code in a Secure Memory Region using the attached digital signature, and
enables secure boot on the device. To verify whether the secure boot configuration
was effective, we can query the HSE Core Boot status, which contains the info on

1https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/ARM/
KeccakP-1600-inplace-32bi-armv7m-le-armcc.s

2https://github.com/pq-crystals/dilithium
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which SMRs were correctly verified during boot. In our development setup we do not
advance the lifecycle of the device, as that would brick our development setup.

7.3.3 Performance results

Beyond validating that a functional Dilithium-based secure boot setup is feasible, it is
of course interesting to compare its performance to the status quo. When secure boot
is enabled, the boot latency is dominated by signature verification. Therefore, it is
sufficient to measure Dilithium verification latency, and compare it to the verification
latencies of a selection of other signature schemes.

The latency is not only determined by the choice of signature scheme, but also by
the length of the application image. All relevant schemes sign and verify in essentially
two steps. First, the variable-length message is pre-hashed down to a fixed-size digest,
possibly including padding, a public key, a commitment, etc. Afterwards the digest
is processed to create the final digital signature. Unfortunately, although this step
is essentially independent of the signature scheme, the choice of hash function does
slightly differ. For example, for ECDSA [ANSI15] a hash function specified in FIPS
180 [NIST15b] should be used (e.g., SHA-256) that is applied only on the message itself,
while in EdDSA [JL17] pre-hashing is optional. The Ed25519 instantiation does not
pre-hash, reducing the message size implicitly together with a prefix in an application
of SHA-512, while Ed25519ph first explicitly reduces the input message using SHA-512.
On the other hand, the Dilithium signature scheme signs arbitrary-length messages by
hashing them together with the public key, using SHAKE-256. Although the choice of
hash function (assuming appropriate length is chosen) is independent of the security
of the public-key signature scheme, it can have significant impact on the performance.
More concretely, by offering hardware support for SHA-2 and not for (variants of)
SHA-3, the S32G274A offers a clear performance benefit for SHA-2. Therefore we
investigate two categories of variants: DilithiumX for X ∈ {2, 3, 5} where application
images are signed directly with Dilithium, and DilithiumX-ph where a SHA-256 hash
over the image is signed instead. To investigate the impact of hashing, we measure the
verification of a signature on both a small image (1 KiB) and a larger image (128 KiB).

We distinguish between the installation time of an application image where the
digital signature of Dilithium is verified (the original proof of authenticity) and boot
time where only the reference proof is verified. Of course, a user can opt to also
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Table 7.1: Latencies of installation (inst.) and boot in milliseconds for supported
algorithms on the S32G274A. Key sizes are reported in bytes. The pre-hash (ph)
variants of Dilithium first hash the image using SHA-256, and verify the Dilithium
signature over the hash.

algorithm size 1KiB 128KiB

pk sig inst. boot inst. boot

RSA 4K 512 512 2.6 0.0 2.7 0.2
ECDSA-p256 64 64 6.2 0.0 6.4 0.2

Dilithium2 1312 2420 12.1 0.0 158.9 0.2
Dilithium3 1952 3293 17.8 0.0 164.4 0.2
Dilithium5 2592 4595 26.6 0.0 173.3 0.2

Dilithium2-ph 1312 2420 11.1 0.0 11.3 0.2
Dilithium3-ph 1952 3293 16.7 0.0 16.9 0.2
Dilithium5-ph 2592 4595 25.5 0.0 25.7 0.2

verify the proof authenticity on each boot, but the performance impact is large (even
in a classical setting), while there are no (significant) security benefits. Because
verification of the reference proof does not depend on the choice of digital signature
scheme, the boot time is actually not affected by switching to a post-quantum variant.
Although the installation for Dilithium is slower than for RSA and elliptic-curve based
variants, it is only performed once (or a few times) and its runtime is not as critical.
We summarize all of our measurements in Table 7.1.

From our benchmarks, we see that Dilithium verification of small images is 5–10
times slower than RSA 4K and 2–5 times slower than ECDSA-p256, depending on the
chosen post-quantum security level. The security level for Dilithium2, Dilithium3
and Dilithium5 is as at least as high as AES-128, AES-192 and AES-256 respectively,
for both classical as well as quantum adversaries, which can help guide in choosing
the appropriate security level for a use case.

When verifying small images, the Dilithium signature verification completes in
less than 30 ms for all variants. Looking at the results for the verification of larger
images without pre-hashing, we see latencies up in the hundreds of milliseconds.
As mentioned, this is almost completely attributed to the SHAKE-256 hash has that
is applied to the image. With additional SHA-256 pre-hashing, the large-image
verification latencies are almost equal to the latencies we measure for small images
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(actually even lower). It is clear that without hardware support for SHAKE-256, the
image verification is dominated by the hashing of the image. In fact, even with pre-
hashing the dominating cost in Dilithium is the pseudo-random matrix generation
using the SHAKE-128 eXtendable Output Function (XOF). Hence, improved latencies
for SHAKE variants would significantly help for low-latency signature verification
using Dilithium. We do not observe this in the case of RSA 4K and ECDSA-p256, since
they hash the image using SHA-256 (for which hardware acceleration is present).
However, we re-iterate that the signature verification only impacts installation time
of the SMR and is irrelevant for the boot time, for which low latency is much more
crucial.

7.4 Conclusion

The main challenges that can be expected when migrating from classical signature
verification schemes such as RSA or ECC to post-quantum variants such as Dilithium,
are an increase in memory (keys, signatures as well as stack) and runtime. The
significantly larger public keys and signatures do not cause any real practical problems
on our target platform in the setting of vehicle network processors. Moreover, we
showed that in this setting of signature verification the amount of stack space required
for cryptographic operations needs to be increased only marginally. The performance
of Dilithium signature verification is indeed worse than that of ECC/RSA verification.
However, as this is only performed during installation time, there is no impact on
the boot time itself. We believe a transition to post-quantum secure boot can be
considered practical for this application.
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8.1 Introduction

At its core, the Dilithium signature scheme is not unlike the Schnorr signature al-
gorithm [Sch90], i.e., a zero-knowledge identification scheme which is made non-
interactive using the Fiat–Shamir heuristic [FS87]. Such constructions are widely
used, for instance in the Ed25519 [BDLS+11] or MEDS [CNPR+23] signature schemes.

In Schnorr, signature generation starts by picking a nonce y at random. In Dilithium,
however, contrary to traditional Schnorr signatures, not every nonce y will result in
a valid signature. For correctness and security, the signature is subjected to several
checks. When any of these checks fail, a completely new y is sampled, and a new
candidate signature is generated and scrutinized in turn. Only when a signature
passes all the checks, it is output to the user. This construction, where candidate
signatures are generated until one of them passes the checks, is called Fiat–Shamir
with Aborts (FSwA) [Lyu09].

In this chapter we demonstrate that one does not have to resample y completely.
Instead, for one of the four checks, we only need to resample parts of y. This allows
one to reuse computations involving the nonce between attempts and leads to a
speed-up in signing time in the order of 4–6%, depending on the platform and the
Dilithium variant.

Touching nonces in Schnorr signatures and ECDSA is considered to be a dangerous
affair. That is because many attacks have been published that have broken schemes or
implementations that reused nonces, or where nonce bias could be detected [AFGK+14;
ANTT+20; BCP10; BH19; BvSY14]. We recognize this fact and carefully study the
security of our proposal: we show that the modified version of Dilithium is as secure
as the original.
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Contributions. We start this chapter by giving a brief recap of Dilithium and the
relevant checks applied during the rejection-sampling loop of the signature generation
algorithm. In Section 8.3, we introduce a proposal to slightly optimize the Dilithium
signature generation algorithm by reusing some of the nonce material. In Section 8.4,
we examine the security of the scheme after (applying the) modification. In Section 8.5,
we look at the performance impact of the new construction, by first counting the
basic operations and then benchmarking optimized AVX2, Cortex-M4, and Cortex-M3
implementations.

8.2 Dilithium recap

In this section, we will give brief recap of the Dilithium signature scheme [DKLL+20]
and will go into more detail about the parts relevant to our optimizations.

The basic building block of Dilithium are polynomials of degree 𝑛 = 256 with
integer coefficients modulo 𝑞 = 223 −213 +1 and the rule 𝑋 256 ≡ −1 when computing
multiplication. Mathematically, these form the ring 𝑅𝑞 ∶= ℤ𝑞[𝑋]/(𝑋 𝑛 + 1).

The “size” of polynomials plays a crucial role in Dilithium. It is taken to be the size
of the largest coefficient, which is its absolute value, so both 1 and 𝑞 − 1 = −1 are
considered small. In Dilithium, this size is defined as the infinity norm, i.e., ‖_‖∞ (see
Section 2.2).

The core of the private key are two small vectors over 𝑅𝑞: s1 ∈ 𝑅ℓ𝑞 and s2 ∈ 𝑅𝑘𝑞
sampled uniformly with ‖s1‖∞ , ‖s2‖∞ ≤ 𝜂, where 𝜂, 𝑘 and ℓ depend on the security
level. (For NIST level 2, we have 𝜂 = 2, 𝑘 = 4, ℓ = 4, see Section 3.3.3.) The core of the
public key is a random 𝑘 × ℓ-matrix A over 𝑅𝑞 together with the vector t ∶= As1 + s2.
It is hard to recover s1 and s2 from t and this is known as the Module Learning With
Errors (MLWE) problem (Definition 3.1).
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8.2.1 Underlying identification scheme

Dilithium is based [KLS18] on the following interactive identification scheme where a
prover having access to the private key, demonstrates this fact to a verifier that knows
the public key, without leaking any information.

prover verifier

commitment w1

challenge 𝑐

response z

sample nonce y
w1 ∶= HighBits(Ay)

sample 𝑐

z ∶= y + 𝑐s1
r0 ∶= LowBits(Ay − 𝑐s2)
abort unless
‖z‖∞ < 𝛾1 − 𝛽 and
‖r0‖∞ < 𝛾2 − 𝛽

w1
′ ∶= HighBits(Az − 𝑐t)

accept if
‖z‖∞ < 𝛾1 − 𝛽 and
w1

′ = w1

The prover generates a random secret nonce1 y ∈ 𝑅ℓ𝑞 with all coefficients in [−𝛾1, 𝛾1)
(with 𝛾1 = 217 for security level 2). The prover sends the commitment w1 = HighBits(
Ay) to the verifier, whereHighBits and LowBits decompose a vector x in the following
unique way (with 𝛾2 =

𝑞−1
88 for level 2):

HighBits(x) ⋅ 2𝛾2 + LowBits(x) = x and ‖LowBits(x)‖∞ ≤ 𝛾2.

Note that the prover must only send the higher bits of w ∶= Ay for otherwise they
would leak y as A is likely to be invertible. After receiving w1, the verifier returns a
random challenge 𝑐 ∈ 𝑅𝑞 with 𝜏 non-zero coefficients, all either 1 or −1, (with 𝜏 = 39
for security level 2). Now the prover computes the response z ∶= y + 𝑐s1. Note
that ‖𝑐s1‖∞ is not very large, it is at most 𝛽 ∶= 𝜏𝜂. Before sending the response, it
performs the following two checks on the sizes of z and r0 ∶= LowBits(Ay − 𝑐s2),

1Nonce as in “number only used once” is misleading: y is neither a number nor is its single-use the only
requirement it should satisfy.
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whose importance will become clear later on.

‖z‖∞ < 𝛾1 − 𝛽. (z-check)

‖r0‖∞ < 𝛾2 − 𝛽, (r0-check)

If any of these fail, the prover aborts and restarts from the beginning. When even-
tually receiving a response (after typically around 3 restarts) the verifier accepts
whenever w1

′ ∶= HighBits(Az − 𝑐t) = w1 and ‖z‖∞ < 𝛾1 − 𝛽.

Without the checks, the scheme wouldn’t always work. Indeed, in general

w1
′ ≡ HighBits(Az − 𝑐t) = HighBits(Ay − 𝑐s2) ≠ HighBits(Ay) ≡ w1

as even though 𝑐s2 has small coefficients (also ≤ 𝛽) they might still carry into the
higher bits and so the verifier won’t trust the prover. This problem is solved by making
sure that the subtraction in Ay − 𝑐s2 does not overflow into r1, which is ensured by
the r0-check [KLS18, Eq. 3]. A different issue is that r0 and z might leak information
on respectively s1 and s2 if they have large coefficients. For instance, if z1 = 𝛾1+𝛽 −1,
then we must have y1 = 𝛾1 − 1 and (𝑐s1)1 = 𝛽. Both checks prevent this kind of
leakage.

The Dilithium scheme is accepting honest-verifier zero-knowledge (acHVZK): that
means we can replicate the distribution of (𝑐, z) in successful sessions without having
access to the secret key.2 Not all (𝑐, z) can occur, but those that do, occur with
equal probability. Now, to simulate a session, pick random (𝑐, z) with ‖z‖∞ < 𝛾1 − 𝛽,
‖LowBits(Az − 𝑐t)‖∞ < 𝛾2 − 𝛽, and 𝑐 as a verifier would sample it. Every pair (𝑐, z)
that occurs in a real session could be generated as such: the first requirement is the z-
check and the second the r0-check because Az − 𝑐t = Ay − 𝑐s2. Conversely, given
such a simulated pair, set y ∶= z − 𝑐s1. This y could have been picked as ‖y‖∞ < 𝛾1
for ‖𝑐s1‖∞ ≤ 𝛽. With this nonce, the prover will pick the right response z. With the
first two requirements, we also made sure that the prover will pass the z-check and
r0-check. And so in the same way as we prove correctness in a regular run, we see
that the verifier will accept. Thus we can indeed simulate the sessions perfectly.

2The commitment w1 is not included as in a successful session it is computed from the challenge and
response.
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8.2.2 Vanilla Dilithium

As covered in Chapter 3, the identification scheme is turned into a signature scheme
using the Fiat–Shamir transform [FS87]. A signature on a message 𝑀 is given by a
pair (𝑐, z) of a challenge 𝑐 and a response z of a successful interaction of the identifi-
cation scheme, where the challenge is not picked randomly by a verifier, but rather
computed as H(𝑀 ‖ w1) for a hash function H that ranges over the challenge space 𝐵𝜏.
After applying the Fiat–Shamir transform, we get the non-interactive signature gen-
eration algorithm as listed in Algorithm 8.1.

To check a signature, a verifier (like in the identification scheme) first checks ‖z‖∞ <
𝛾1 − 𝛽 and then computes w1

′ ∶= Az − 𝑐t, which should be equal to the original
commitment w1. The verifier does not have access to the original commitment
(as it was not included in the signature), but can check whether it was correct by
recomputing the challenge using the supposed commitment and comparing it against
the one included in the signature.

Algorithm 8.1: Simplified vanilla Dilithium
Signvanilla(𝑠𝑘 = (A, t, s1, s2), 𝑀)
1: 𝜅 ∶= 0
2: sign: loop
3: for 𝑖 from 0 up to ℓ − 1 do
4: y𝑖 ∶= ExpandMask(𝜅); 𝜅 ∶= 𝜅 + 1
5: w1 ∶= HighBits(Ay)
6: 𝑐 ∶= H(𝑀 ‖ w1)
7: z ∶= y + 𝑐s1
8: if ‖z‖∞ ≥ 𝛾1 − 𝛽 then ▷ z-check
9: continue sign

10: if ‖LowBits(Ay − 𝑐s2, 𝛾2)‖∞ ≥ 𝛾2 − 𝛽 then ▷ r0-check
11: continue sign
12: return (𝑐, z)

The full Dilithium scheme is rather more complex, as it includes tricks to decrease
signature and key sizes (such as only publishing the higher bits of t) while increasing
performance (by sampling in the NTT domain.) These details, however, do not impact
the security of the scheme or our proposal and will direct the curious reader Chapter 3.
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8.3 Our proposal

In vanilla Dilithium, to create a signature, we randomly sample a nonce y and then
compute in sequence the commitment w1, challenge 𝑐 and response z. Not every y
will lead to a valid identification session as the z-check or r0-check might fail. In that
case, we completely start over again with a new nonce y.

8.3.1 Resample only the prefix of y after failed z-check

Note that by the definition of the norm, the z-check involves the following ℓ subchecks,
one for each component of y: ‖(y + 𝑐s1)𝑖‖∞ < 𝛾1−𝛽. If the first subcheck fails (without
having performed the other checks or subchecks), then instead of aborting completely
and resampling all elements of y, we propose to resample y1 but keep y2, … , yℓ for
the next iteration. This allows one to reuse the computations of A𝑖𝑗y𝑗 for 𝑗 ≠ 1, which
were required to compute 𝑐 via Ay. As Ay changes, the commitment w1 changes with
high probability (cf. [KLS18, Lemma C.1]) and the challenge 𝑐 will be different after
this partial abort.

If z-check fails at y2 (after y1 passed) then we cannot reuse y1, because it will have
to pass the check for at least one other challenge 𝑐. This will introduce a bias in y1,
although it is unclear to us whether this bias could lead to a practical attack. Instead
we propose to resample only y1, … , y𝑖 if the first check fails at y𝑖 (and only having
checked y1, … , y𝑖).

After resampling, this new y is computationally indistinguishable from a freshly
generated one. Indeed, its only bias is that y𝑖+1, … , yℓ has been used to compute the
previous challenge 𝑐, but we assume that the hash function H behaves as a random
oracle.

In Algorithm 8.2we provide the firstmodified version of theDilithium signing proce-
dure. We label the alteration3 with alt-z and denote the algorithm with Dilithiumalt-z.
In the new Signalt-z routine, the variable 𝜉 is introduced to keep track of how many
y-elements are to be resampled after a failed z-check.

Note that signatures are compatible between vanilla and modified Dilithium: a
signature generated by one will be verified by the other. Indeed, we did not change the
verification routine. However, when using deterministic signatures, signing the same

3We say alteration (abbreviated as alt), instead of modification (abbreviated as mod), to prevent confusion
with modulo (also abbreviated as mod).
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Algorithm 8.2: Reusing polynomials in y after partially checking z.
Signalt-z(𝑠𝑘 = (A, t, s1, s2), 𝑀)
1: 𝜅 ∶= 0; 𝜉 ∶= ℓ
2: sign: loop
3: for 𝑖 from 1 up to 𝜉 do ▷ Only (re)sample the first 𝜉 elements of y
4: y𝑖 ∶= ExpandMask(𝜅); 𝜅 ∶= 𝜅 + 1
5: w1 ∶= HighBits(Ay, 2𝛾2)
6: 𝑐 ∈ 𝐵𝜏 ∶= H(𝑀||w1)
7: z ∶= y + 𝑐s1
8: for 𝑖 from 1 up to ℓ do
9: if ‖z𝑖‖∞ ≥ 𝛾1 − 𝛽 then ▷ z-check

10: 𝜉 ∶= 𝑖
11: continue sign
12: 𝜉 ∶= ℓ
13: if ‖LowBits(Ay − 𝑐s2, 𝛾2)‖∞ ≥ 𝛾2 − 𝛽 then ▷ r0-check
14: continue sign
15: return (𝑐, z)

message using the same secret key will lead to two different signatures on the same
message if different implementations are used to sign the same message. Moreover,
the modified versions of Dilithium are not specification compliant.

8.3.2 Compatibility with streaming implementations

Some implementations (e.g. [GKS21, Strategy 3]), optimize for memory-constrained
environments. To use memory efficiently, they typically computew = Ay one element
at a time where each component of A and y is generated on the fly.

With our modifications, we are not resampling exactly ℓ elements of y during each
loop iteration. Some polynomials y𝑖 might have been fixed some loop iterations ago,
using an old 𝜅 that could have been forgotten. To ensure compatibility with other
implementations, the streaming implementation will have to keep track of the 𝜅 values
that were used to generate the elements of y that are still in use.
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8.4 Security

The security claim of Dilithium is strong unforgeability under chosen message attacks
(SUF-CMA), of which we have provided a high-level intuition in Section 3.2.4. The
original security proof is given in [KLS18] and its references. However, the proof of
the Fiat–Shamir with aborts (FSwA) heuristic was found to be incomplete. The gap
was identified in [BBDD+23; DFPS23] and the proof was closed. Using [BBDD+23],
we will show that that proof still applies, even though the value of 𝜖 (denoting the
guessing probability of w1) might be reduced.

8.4.1 Adapting the ROM proof of [BBDD+23]

[BBDD+23] contains both a proof in the random oracle model (ROM) and a proof in
the quantum random oracle model (QROM). In this chapter, we will use the existing
ROM proof to analyze the security of our proposals, and leave the QROM analysis for
future work. To reduce the security of (vanilla) Dilithium from UF-CMA to UF-NMA
in the ROM, [BBDD+23] uses a hybrid proof with three main steps: In the first hybrid
step, they replace the signing oracle Sign(𝑀) with the Prog(𝑀) oracle. Prog(𝑀),
instead of querying a challenge 𝑐 ∶= H(𝑀,w1) from the random oracle H, samples
𝑐 uniformly and programs H(𝑀,w1) ∶= 𝑐 accordingly. In the second step, Prog(𝑀)
is replaced with Trans(𝑀), which hoists the random-oracle programming out of the
rejection sampling loop and programs the random-oracle once when an accepting
signature is found. Then, in the third step, Trans(𝑀) is replaced with ZKSim(𝑀),
in which the signature (w1, 𝑐, z) is generated by the simulator (instead of a signing
routine).

For the modified version of Dilithium, we will have to adjust the hybrid steps
to incorporate the nonce-reusing aspect of the scheme. In Figure 8.1, we list the
adversary’s oracle for each hybrid step. In these algorithms, Comm(sk) denotes the
commitment-generating part of the Dilithium algorithm. The modified-Dilithium
variant Commalt-z(sk, y, 𝜉 ) also takes the already-present vector y as input, plus 𝜉
which is the number of y elements that should be regenerated. Resp(w1, 𝑐, y) de-
notes the computation that generates z from w1, 𝑐, and y. Resp(w1, 𝑐, y) includes
the rejection-sampling checks, and returns ⊥ (indicating failure) if any of the checks
fail. The modified-Dilithium variant Respalt-z(w1, 𝑐, y) additionally returns an up-
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Signalt-z(𝑀):
1: y ∶= ⊥
2: 𝜉 ∶= ℓ
3: repeat
4: (w1, y) ← Comalt-z(sk, y, 𝜉 )
5: 𝑐 ∶= H(w1, 𝑀)
6: (z, 𝜉 ) ← Respalt-z(w1, 𝑐, y)
7: until z ≠ ⊥
8: return (w1, z)

Progalt-z(𝑀):
1: y ∶= ⊥
2: 𝜉 ∶= ℓ
3: repeat
4: (w1, y) ← Comalt-z(sk, y, 𝜉 )
5: H(w1, 𝑀) ∶= 𝑐 ← 𝐶
6: (z, 𝜉 ) ← Respalt-z(w1, 𝑐, y)
7: until z ≠ ⊥
8: return (w1, z)

Transalt-z(𝑀):
1: y ∶= ⊥
2: 𝜉 ∶= ℓ
3: repeat
4: (w1, y) ← Comalt-z(sk, y, 𝜉 )
5: 𝑐 ← 𝐶
6: (z, 𝜉 ) ← Respalt-z(w1, 𝑐, y)
7: until z ≠ ⊥
8: H(w1, 𝑀) ∶= 𝑐
9: return (w1, z)

Simalt-z(𝑀):

1: (w1, 𝑐, z) ← ZKSimalt-z(pk)
2: H(w1, 𝑀) ∶= 𝑐
3: return (w1, z)

Figure 8.1: The oracles Signalt-z, Progalt-z, Transalt-z, and Simalt-z, which are used
during the security analysis.

dated value for 𝜉, which corresponds to how many elements of y are discarded and
regenerated during the next iteration.

In Section 8.4.2 we will quantify the security loss between the Signalt-z(𝑀) game
and the Transalt-z(𝑀) game, based on the reasoning from [BBDD+23]. Then, in
Section 8.4.3 we list themodified transcript simulator, demonstrating that the signature
generation of Transalt-z(𝑀) is zero-knowledge. At that point, we have reduced the
construction from UF-CMA to UF-NMA. The rest of the security is unaffected in the
modified version of Dilithium.
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8.4.2 From Signalt-z(𝑀) to Transalt-z(𝑀)

We copy and tweak the proof from [BBDD+23] to determine the new bounds for

ΔSignalt-z→Progalt-z

𝑝,𝜖0,𝜖 (𝑞𝑆, 𝑞𝐻) and Δ
Progalt-z→Transalt-z
𝑝,𝜖0,𝜖 (𝑞𝑆, 𝑞𝐻). Consider a collection of hybrid

oracles Hyb𝑘 which program the random oracle (RO) during the first 𝑘 iterations,
and make regular RO calls during the other iterations. This way we transform from
Signalt-z = Hyb0 into Progalt-z = Hyb∞ by each time replacing the oracle by an
oracle in which the RO is programmed one additional time. Likewise, we will replace
Signalt-z with Progalt-z in one of the adversary’s queries at a time.

Hyb𝑘(𝑀):
1: y ∶= ⊥
2: 𝜉 ∶= ℓ
3: 𝑖 ∶= 0
4: repeat
5: (w1, y) ← Comalt-z(sk, y, 𝜉 )
6: if 𝑖 < 𝑘 then
7: H(w1, 𝑀) ∶= 𝑐 ← 𝐶
8: else
9: 𝑐 ∶= H(w1, 𝑀)

10: (z, 𝜉 ) ← Respalt-z(w1, 𝑐, y)
11: 𝑖 ∶= 𝑖 + 1
12: until z ≠ ⊥
13: return (w1, z)

Figure 8.2: Hybrid signing oracle in which the first 𝑘 iterations, the random oracle is
programmed, and the random oracle is called in all subsequent iterations. When in-
creasing 𝑘, Hyb𝑘 is gradually transformed from Hyb0 = Signalt-z to Hyb∞ = Progalt-z.

So, in total, we will have 𝑞𝑆 ⋅ 𝜅 steps, where 𝑞𝑆 is the number of queries that the
adversary is allowed to make, and 𝜅 is the number of iterations after which the
signature generation is aborted in its entirety. Consider the hybrid step (𝑖, 𝑗) in which
the adversary’s queries 0 to 𝑖 − 1 are answered by Progalt-z; before the step, query 𝑖 is
answered by Hyb𝑗; after the step, query 𝑖 is answered by Hyb𝑗+1; and the adversary’s
queries 𝑖 + 1 to 𝑞𝑆 − 1 are answered by Signalt-z.

Both scenarios behave identically, unless iteration 𝑗 is reached during query 𝑖, and
(w1, 𝑀) is already in the domain of the RO. We can bound the probability of this bad
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event occurring by

𝛿𝑖,𝑗,𝜖𝑗 ∶= 𝑝𝑗𝜖𝑗 (
𝑖

1 − 𝑝
+ 𝑞𝐻 + 𝑗) ,

where

• 𝑝 is the rejection probability;

• 𝜖𝑗 is a minimum bound on the guessing probability of w1 during iteration 𝑗 of
the rejection sampling loop;

• 𝑖
1−𝑝 oracle queries are included in the domain of the RO due to 𝑖 previous
queries to Prog;

• 𝑞𝐻 oracle queries are included in the RO domain because of the adversary’s
RO-query allowance; and

• 𝑗 queries are included because at iteration 𝑗 + 1, the Hyb𝑗+1 will have made 𝑗
queries to the RO during the same signature’s generation.

The value of 𝛿𝑖,𝑗,𝜖𝑗 is the same as is reported by [BBDD+23], except for one aspect:
In [BBDD+23], the guessing probability of w1 is a single constant, whereas with our
proposals the guessing probability of w1 is not constant across loop iterations of the
signature-generation oracles.

With the proposal, the first iteration of the rejection-sampling loop generates
y and w1 identical to vanilla Dilithium. As such, the guessing probability of the
first commitment (i.e., 𝜖0) is equal to the guessing probability in vanilla Dilithium
(𝜖 in [BBDD+23]). However, subsequent iterations may reuse the tail of y. This
results in a correlation between the different commitment values, which increases
the guessing probability of 𝜖𝑗 where 𝑗 > 0. We will get back to that in Section 8.4.4.
For now, we will just consider 𝜖0 as the guessing probability of w1 in iteration 𝑗 = 0,
and 𝜖 is the guessing probability of w1 for iterations 𝑗 > 0.

We take a sum over all the steps in this game hop, i.e., 𝑞𝑆 steps for the number of
queries, and 𝜅 steps for the number of Hyb𝑘 hybrids. This results in a total loss of

𝑞𝑆−1
∑
𝑖=0

(𝑝𝜅 +
𝜅−1
∑
𝑗=0

𝛿𝑖,𝑗,𝜖𝑗) =
𝑞𝑆−1
∑
𝑖=0

(𝑝𝜅 + (𝛿𝑖,0,𝜖0 − 𝛿𝑖,0,𝜖) +
𝜅−1
∑
𝑗=0

𝛿𝑖,𝑗,𝜖) .
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Taking the limit of 𝜅 → ∞ results in4

ΔSignalt-z→Progalt-z

𝑝,𝜖0,𝜖 = lim
𝜅→∞

(
𝑞𝑆−1
∑
𝑖=0

(𝑝𝜅 + 𝛿𝑖,0,𝜖0 − 𝛿𝑖,0,𝜖 +
𝜅−1
∑
𝑗=0

𝛿𝑖,𝑗,𝜖))

≤ 𝑞𝑆(𝜖0 − 𝜖) (
𝑞𝑆 − 1
2(1 − 𝑝)

+ 𝑞𝐻) + 𝑞𝑆𝜖
𝑞𝐻

1 − 𝑝
+ 𝑞𝑆𝜖

𝑞𝑆 + 1

2(1 − 𝑝)2
. (8.1)

We continue with the step from Progalt-z to Transalt-z, still closely following the
proof from [BBDD+23]. The new hybrid oracle Hyb2 (the updated version of Hyb2
from [BBDD+23]) is listed in Figure 8.3.

Hyb𝑘2(𝑀):
1: y ∶= ⊥
2: 𝜉 ∶= ℓ
3: 𝑖 ∶= 0
4: repeat
5: (w1, y) ← Comalt-z(sk, y, 𝜉 )
6: 𝑐 ← 𝐶
7: if 𝑖 ≥ 𝑘 then
8: H(w1, 𝑀) ∶= 𝑐 ← 𝐶

9: (z, 𝜉 ) ← Respalt-z(w1, 𝑐, y)
10: 𝑖 ∶= 𝑖 + 1
11: until z ≠ ⊥
12: if 𝑖 < 𝑘 then
13: H(w1, 𝑀) ∶= 𝑐

14: return (w1, z)

Figure 8.3: Hybrid signing oracle in which, during the first 𝑘 iterations, the random
oracle is programmed only once, and the random oracle is programmed every time
during all subsequent iterations. When increasing 𝑘, Hyb𝑘 is gradually transformed
from Hyb0 = Progalt-z to Hyb∞ = Transalt-z.

Again, both scenarios behave almost identically. However, when iteration 𝑗 is
reached and the candidate signature is rejected during that iteration, H has one more
(w1, 𝑀) pair in its domain. The bad event occurs when the adversary manages to
query H for that same (w1, 𝑀) pair. The probability of this bad event occurring is

4Derivation is listed in Appendix 8.B.
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bounded by
𝛿′𝑖,𝑗,𝜖𝑗 = 𝑝𝑗𝑞𝐻𝜖𝑗.

After taking the sum over all the steps and taking the limit of 𝜅 → ∞ this results in

ΔSignalt→Progalt

𝑝,𝜖0,𝜖 = lim
𝜅→∞

𝑞𝑆−1
∑
𝑖=0

(𝑝𝜅 +
𝜅−1
∑
𝑗=0

𝛿′𝑖,𝑗,𝜖𝑗)

=
𝑞𝑆−1
∑
𝑖=0

(𝛿′𝑖,0,𝜖0 − 𝛿′𝑖,0,𝜖 +
∞
∑
𝑗=0

𝛿′𝑖,𝑗,𝜖)

=
𝑞𝑆−1
∑
𝑖=0

((𝜖0 − 𝜖)𝑝0𝑞𝐻 +
∞
∑
𝑗=0

𝑝𝑗𝑞𝐻𝜖)

=
𝑞𝑆−1
∑
𝑖=0

(
(𝜖0 − 𝜖)(1 − 𝑝)𝑞𝐻

1 − 𝑝
+ 𝜖

𝑞𝐻
1 − 𝑝

)

= 𝑞𝑆𝑞𝐻
𝜖0 + 𝑝(𝜖 − 𝜖0)

1 − 𝑝
. (8.2)

8.4.3 Zero-knowledgeness of Transalt-z(𝑀)

In Transalt-z(𝑀), z is computed element-wise, as z ∶= y + 𝑐s1 as always. At this point,
𝑐 is uniformly sampled from the challenge space 𝐵𝜏, instead of being provided by the
random oracle. Consequently, 𝑐 is now completely independent of y. Therefore, there
is no statistical dependence left between the elements of z, and after the z-check, z is
completely uniform.

As such, we can replace the computation of z with z
$
← 𝑆𝛾1−𝛽, computing r0 as

r0 ∶= Az − 𝑐t. This leads to the ZKSim(pk) algorithm, as listed in Figure 8.4, which
perfectly simulates the transcripts of Transalt-z(𝑀). It is the same simulator as that of
vanilla Dilithium.

8.4.4 Min-entropy of w1

As we saw in the previous sections, the distribution of y is slightly different from
the distribution of y in vanilla Dilithium. This resulted in a separation from the
guessing probability of w1 for the first iteration 𝜖0 and the guessing probability for
every subsequent iteration 𝜖 in the security analysis. Each guessing probability is
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ZKSim((A, t) ∶= pk):
1: repeat
2: 𝑐

$
← 𝐵𝜏

3: z
$
← 𝑆ℓ−1𝛾1−𝛽

4: r1 ∶= HighBits(Az − 𝑐t)
5: r0 ∶= LowBits(Az − 𝑐t)
6: until ‖r0‖∞ < 𝛾2 − 𝛽
7: return (r1, 𝑐, z)

Figure 8.4: Simulator for Transalt-z transcripts.

related to the min-entropy of the value by 𝐻∞(𝑋) = − log2 𝑥 where 𝑥 is the guessing
probability of 𝑋.

For vanilla Dilithium it is shown that, with overwhelming probability,A is generated
such that the min-entropy ofw1 is at least 117 bits [KLS18, Lemma C.1].5 Even though
the appendix of [BBDD+23] has included a much more elaborate analysis of the min-
entropy of the commitment, for simplicity’s sake we base our reasoning on the original
Dilithium paper. We adapt their proof to our situation.

Recall w1 = HighBits(w) and w = Ay. For brevity, write 𝑤11 ∶= (w1)1. Let 𝑊 be
the set of those 𝑤 with HighBits(𝑤) = 𝑤11. By definition of HighBits, the size of 𝑊 is
at most (2𝛾2 + 1)𝑛. Note w1 = ∑𝑗 A𝑗,1𝑦𝑗. Assume for now that there is an invertible
element A𝑖,1 in the first column of A. Then

𝑌 ∶= {y1 ; ∑
0≤𝑗≤ℓ

A𝑗1y𝑗 = w1} = A−1
𝑖1 (𝑊 −∑

𝑗≠𝑖
A𝑗1y𝑗). (8.3)

Hence 𝑌 has the same number of elements of 𝑊. Crucially in our modification of
Dilithium, the distribution of y1 is still uniform, and so the chance we get one that
leads to 𝑤11 is

Pr [y1 ∈ 𝑌] = #𝑌
# ̃𝑆𝛾1

≤ (
2𝛾2 + 1
2𝛾1

)
𝑛
. (8.4)

5For the original version of Dilithium as published in [KLS18] the min-entropy is with a high probability
(≥ 1 − 2−179 for Dilithium2) of at least 255 bits. With the updated parameters of Dilithium round 3, the
min-entropy is with an overwhelming probability (≥ 1 − 2−239 for Dilithium2) of at least 117 bits.
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Thus, if there is an invertible element in the first column of A, then the min-entropy
of the resulting commitment w1 is at least

− log2 max
y1∈ ̃𝑆𝛾1

Pr [y1 ∈ 𝑌] = −𝑛 log2
2𝛾2 + 1
2𝛾1

≥ 117, (8.5)

resulting in a guessing probability of 𝜖 ≤ 2−117. Therefore, we conclude that as long
as the assumption on A holds, the guessing probability of w1 is not reduced. In other
words 𝜖 = 𝜖0.

A min-entropy of 117 seems low, especially because the min-entropy needs to be
much higher than the scheme’s claimed security level in bits. However in [KLS18] it
is noted that the bounded number of bits is probably far from the real min-entropy.
As the range of HighBits(A ⋅ ) is very large, upwards of 217960, and heuristically close
to uniform, it is very likely that the min-entropy is much larger. Additionally, there
is another result [KLS18, Lemma 4.7] which shows that for smaller 𝛾1 and 𝛾2 the
min-entropy (which heuristically should then be smaller) is upwards of 1000 bits,
without needing an invertible element in A. Therefore, even if none of the elements
in A are invertible, it seems unlikely that the min-entropy of w1 is ever dangerously
small in (the modified) Dilithium. Moreover, [BBDD+23, Appendix A] includes a
more thorough analysis of the min-entropy which again leads to an adequately low
guessing probability. At this point it is unclear to us whether that analysis is also
applicable to our modifications.

The assumption that the first column ofA contains an invertible element is different
from vanilla Dilithium, where the invertible element can exist in any column ofA. The

probability that some uniformly sampled polynomial is invertible is (1 − 1
𝑞)

𝑛
≥ 1 − 𝑛

𝑞 .
Thus, the chance that none of the polynomials in the first column of A is invertible

is at most ( 𝑛𝑞)
𝑘
. This probability is the highest for the Dilithium2 parameter set,

where 𝑘 = 4 and this probability is approximately 2−60. Technically, there is no single
unequivocal way to judge whether this probability is too high, because the UF-CMA
security model does not allow the adversary to trigger key-generation events and
we anticipate that the real probability is much lower. However, from a practical
perspective, even for random-chance events, 2−60 is just too high. Fortunately, we can
easily work around the issue by always regenerating the 𝑖th element of y instead of the
1st element, where 𝑖 corresponds to a column of A that contains at least one invertible
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element.6 The overhead of this approach will be minimal, and the probability bound
will be completely restored (to 2−ℓ⋅60). A less complicated fix could be to increase the
minimum number of y elements that are to be sampled freshly. For example, when we
require that there are always at least 2 freshly generated y elements, the probability
is reduced to 2−120. This still leads to considerable speed-ups for Dilithium. Still, we
encourage further research towards finding better bounds both for the min-entropy
of w1 as well as the unlikeliness of A.

8.5 Performance

8.5.1 Operations saved

By not resampling the complete vector y every time a z-check fails, we save a bit of
computation time, that was originally spent generating y and computing w ∶= Ay.

Using a Sage script, we estimate the potential performance improvement by simu-
lating the rejection-sampling loop up to the second check. Note that this does not
include the expansion of A.7

The simulations count the number of y elements that have been sampled, and count
the number of calls to KeccakF1600_StatePermute (the SHA3/SHAKE primitive)
and NTT. For completeness, we also include calls to the inverse NTT (NTT-1), even
though the number should be the same for both scenarios.8 The results are listed in
Table 8.1.

For every mode of Dilithium, we reduce the number of y-component generations:
up to 20% of the total number of generated polynomials, in the case of Dilithium3.
This saving is reflected in the total number of KeccakF1600_StatePermute calls (14%
less) and the number of computed NTTs (16% less.) There is (as expected) no change
in the number of computed NTT-1s.

The theoretical counts provide a useful high-level intuition of the speedup that
our optimizations provide. However, as performance of these primitives (and their
subtle interaction) varies per platform, we continue with measurements on actual
implementations on various platforms.

6We also have to make sure that the corresponding element of z is checked first during the z-check.
7To decrease the size of the public key, Dilithium does not store A in the public key, but rather a seed

from which A can be reconstructed.
8The slight differences in Table 8.1 are due to the stochastic nature of the simulation.
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Table 8.1: Average number of sampled y elements, calls to KeccakF1600_StateP-
ermute, NTT, and NTT-1 in the Dilithium rejection-sampling loop; using unmodified
Dilithium signing, and using the modification proposed in this chapter. Percentages
indicate the relative number of calls for each operation (lower is better). Averages
were computed over 100 000 runs.

baseline alt-z

Dilithium2

y elems 17.30 (100%) 13.93 (80%)

KeccakF 95.16 (100%) 81.65 (86%)

NTT 21.63 (100%) 18.25 (84%)

NTT-1 51.90 (100%) 51.90 (100%)

Dilithium3

y elems 25.49 (100%) 21.38 (84%)

KeccakF 158.05 (100%) 137.73 (87%)

NTT 30.59 (100%) 26.52 (87%)

NTT-1 86.67 (100%) 87.33 (101%)

Dilithium5

y elems 27.18 (100%) 22.99 (85%)

KeccakF 182.47 (100%) 161.71 (89%)

NTT 31.06 (100%) 26.89 (87%)

NTT-1 89.29 (100%) 89.60 (100%)
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8.5.2 Optimized implementation

We have implemented the altered Dilithium signature scheme in optimized imple-
mentations for x64 with AVX2, Cortex-M4, and Cortex-M3, and benchmarked their
performance.

AVX2. For AVX2, we base ourmodified implementation on the round-3 code package
from the CRYSTALS team [DKLL+18].9 Because of the relative abundance of RAM on
x64 platforms, we can easily cache all of the accumulated values in w. That is, we
keep in memory all the values A𝑖𝑗y𝑗 for 𝑖 = 1, … 𝑘 and 𝑗 = 1, … , ℓ.

In all implementations (i.e., including the baseline) we apply aggressive lane stuff-
ing. I.e., we always generate four elements of y in parallel during the execution of
ExpandMask, and if we do not need that many y elements at that point; we precom-
pute elements for use in the next iteration of the rejection-sampling loop.

Cortex-M{4,3}. For the Cortex-M4 platform, we use the STM23F407 Discovery
board, which is based on the STM32F407VG microcontroller; for Cortex-M3, we use
the Arduino Due, which features an ATSAM3X8E microcontroller. We have ported
the reference implementation to each platform, and then applied the optimizations
described in [GKS21, Sec. 4].

In the context of post-quantum signature schemes, both of these boards have a
relatively low amount of SRAM. This makes it impossible to cache all components of
w, for which we would need another 𝑘 × ℓ KiB of SRAM. Instead, on the Cortex-M
platforms, we cache only the value

w′ = A(0, y2, y3, …).

Storing this extra w′-vector only needs an extra 𝑘 KiB of SRAM space.

Benchmarking setup. We benchmark the AVX2 implementation of Dilithium
using the benchmarking tool provided in the NIST submission code package. For the
AVX2 implementation, 100 000 iterations were run on an Intel Core i7-4770 (Haswell)
processor and its average recorded. On the x64 processor, all measurements were

9Available for download at
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions.
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done with Turbo Boost disabled, all Hyper-Threading cores shut down, and with
the CPU clocked at the maximum nominal frequency. The Arm Cortex-M4 and M3
implementations were benchmarked on an STM32F407VG and an ATSAM3X8E re-
spectively. The STM32F407 chip was clocked at 24 MHz and the flash wait states
were set to zero; the algorithm latencies were measured using the SysTick counter.
The ATSAM3X8E was clocked at 16 MHz and its wait states were also set to zero; the
measurements used the internal CYCCNT cycle counter. On Cortex-M4, the measure-
ments were averaged over 10 000 samples; on Cortex-M3, the measurements were
averaged over 1 000 samples.

Table 8.2: Average latencies of Dilithium signature generation on AVX2, Cortex-M4,
and Cortex-M3. Cycle counts are listed in kilocycles and include the computation
of A. Percentages report the total speedup of applying both proposals compared
to the baseline (vanilla) Dilithium. Note that these results cannot be compared
with [GKS21], because the parameters of Dilithium have been updated for round 3 of
the NIST competition (and so our baseline is an update of [GKS21, Strategy 2]).

baseline alt-z

Dilithium2
AVX2 367 345 (6%)
Cortex-M4 4 458 4 168 (6%)
Cortex-M3 7 591 7 275 (4%)

Dilithium3
AVX2 564 532 (6%)
Cortex-M4 7 137 6 889 (3%)
Cortex-M3 12 316 12 015 (2%)

Dilithium5
AVX2 691 661 (4%)
Cortex-M4 9 447 9 079 (4%)
Cortex-M3 –a –a

a Not enough SRAM available to store Dilithium5
state.

Results. The results of our improved version of Dilithium are listed in Table 8.2.
We observe performance speedups ranging from 2% for Dilithium3 on Cortex-M3, up
to 6% for multiple configurations.

It should be stressed that all of these benchmarks include the setup stage of Dilithium.
This is the conventional method of measuring Dilithium’s performance. That is, the
measurements include the expansion of the matrix A and the initial NTTs of s1, s2
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and t0. In cases where the generation of the matrix is relatively fast (e.g., when
the platform has hardware-acceleration for SHAKE), the setup stage will be shorter,
resulting in a greater relative speedup.
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Figure 8.5: Probability of Dilithium3 signature generation on AVX2 to complete after
a latency of 𝑥 cycles. The setup stage is illustrated by the red box that runs from 0 to
130 kcc. The average latency is marked with a dot.

Moreover, it has been argued by [RGCB19] and [GKS21] that this setup stage
often does not need to be computed during signature generation, but that it can be
considered as part of the key generation instead. To provide you with an intuition,
we have plotted the portion of Dilithium3 signature generations that finishes after 𝑥
cycles in Figure 8.5. The figure shows that when the setup stage is precomputed, the
relative speedup is 7% instead of 6%.

If we do not precompute the setup stage, the effect of an improved performance
in the rejection-sampling loop is still better for the worse-case runs of the signature
generation algorithm, because the latency of the setup stage is amortized. Indeed, if
we look at the 90% percentile, the speedup of our improved algorithm is 13%; and at
the 99% percentile, the speedup is 16%.
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8.6 HAETAE

One of the submissions to the NIST competition for additional post-quantum digital
signatures [NIST22b] is HAETAE [CCDG+23]. Like Dilithium, HAETAE is a Fiat–
Shamir-with-aborts scheme. Perhaps our proposals could also be applied to that
scheme.

However, after closer inspection we find that our proposals cannot be applied to
HAETAE. Instead of the infinity norm, HAETAE uses the ℓ2 norm (or Euclidean norm)
in its rejection-sampling checks. In HAETAE, the ℓ2 norm of a vector v is computed
as ‖v‖2 = √v1,0 + ⋯ + v𝑘,𝑛−1, which cannot easily be split into a number of subchecks.
One has to look at all the elements of v before one can conclude that v would lead to
an abort. However, after having inspected all the elements of v, all the elements of v
will have been significantly biased with the result of the check. This bias will remain
when reusing the values in the next iterations, which will result in non-uniform ⌊z⌉
output values. We see no way to overcome this as long as the norms in HAETAE are
ℓ2.

8.7 Conclusion

We propose an optimization to the Dilithium signature scheme, where we reuse parts
of the nonce vector y when an abort occurs on one of the rejection-sampling checks.
Our security analysis shows that the there is no additional security loss. In turn,
the modifications lead to a slight speedup for the Dilithium signature generation
algorithm, which ranges from 2% on Cortex-M3 for Dilithium3 to 6% for multiple
configurations.

Still, our security analysis depends on the Dilithium matrix A containing an invert-
ible polynomial in its first column.10 Even though we can mitigate this reliance using
extra logic, that logic would lead to very error-prone bookkeeping in the signature
generation algorithm, which is not ideal. Therefore, we leave it to the community
to decide which use cases allow for the implementation of these optimizations. In
any case, we encourage additional scrutiny of our proposals, as well as analysis on

10One could consider modifying the key generation to only output keys with A matrices that have at least
one invertible element in the first column. However, this changes the distribution of A, which might
be in violation with the MLWE assumption.
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better bounds of the min-entropy of w1, and the prevalence of insecure A matrices in
Dilithium.

Before our contribution, the iterations of the rejection-sampling loop of any Fiat–
Shamir with aborts scheme have always been completely independent. As far as
we know, our work is the first attempt at reusing values across iterations of the
FSwA rejection-sampling loop; and even though this chapter focuses entirely on
Dilithium, we would like to clarify that these kinds of nonce-reusal optimizations
could be applied elsewhere, if the rejection condition can be divided into subchecks.
Larger lattice-based zero-knowledge proofs, or schemes that sample their nonces
from Gaussian distributions in particular stand to benefit as sampling from those
distributions is expensive (e.g. [LNS20; Lyu12]).

8.A Resampling only y1 after failed r0-check

In this section we propose a second possible optimization to the Dilithium scheme,
where we only resample the first element of y any time the r0-check leads to a reject.
We have not been able to completely show the security of this modification, however
we have also not encountered any clear reasons why it should be insecure.

8.A.1 Signalt-r0

Heuristically, as the r0-check only looks at the lower bits and A (being uniform) mixes
all components of y, resampling just y1 should give a new independent chance for r0-
check to pass. Thus, a second proposal, is to resample only y1 when the r0-check
fails, and to perform the r0-check before the z-check. Contrary to the other proposal,
the order of the checks is important. If we were to perform the z-check first, then it is
likely that we will have picked a y whose tail has passed the z-checks multiple times,
with different challenges 𝑐. This will bias y to have smaller values in its tail.11

After swapping the checks and modifying Algorithm 8.2, such that only y1 is
resampled when r0-check fails, we get Algorithm 8.3. We will call the new alteration
of the algorithm alt-r0. It can be applied independent of the other modification

11Another way of looking at this is that we have to discard all vector elements that we checked during
the z-check. We can only reuse the polynomials that we have not looked at yet. Conversely, for
the r0-check, if any of the polynomials in r0 exceeds the bounds, we have to regenerate at least one
polynomial in y.

146



8

8.A Resampling only y1 after failed r0-check

Algorithm 8.3: Proposal 2: Reuse y2, … , yℓ after aborting on r0-check.

Signalt-r0(𝑠𝑘 = (A, t, s1, s2), 𝑀)
1: 𝜅 ∶= 0; 𝜉 ∶= ℓ
2: sign: loop
3: for 𝑖 from 1 up to 𝜉 do ▷ Only (re)sample the first 𝜉 elements of y
4: y𝑖 ∶= ExpandMask(𝜅); 𝜅 ∶= 𝜅 + 1
5: w1 ∶= HighBits(Ay, 2𝛾2)
6: 𝑐 ∈ 𝐵𝜏 ∶= H(𝑀||w1)
7: z ∶= y + 𝑐s1
8: if ‖LowBits(Ay − 𝑐s2, 𝛾2)‖∞ ≥ 𝛾2 − 𝛽 then ▷ r0-check
9: 𝜉 ∶= 1

10: continue sign
11: if ‖z‖∞ ≥ 𝛾1 − 𝛽 then ▷ z-check
12: 𝜉 ∶= ℓ
13: continue sign
14: return (𝑐, z)

described in Section 8.3; or it can be combined, compounding the speed improvements
of both proposals.

8.A.2 Security

The security reduction, from Signalt-r0 to Transalt-r0 is the same as in Section 8.4.2. It
leads to the transcript generator listed in Figure 8.6. Unfortunately, we see no way to
perfectly simulate the transcripts generated by Transalt-r0 , because the order of the
checks is swapped in alt-r0.

In vanilla Dilithium, reordering the checks is allowed because the action that is
taken is the same regardless of the check (i.e., all elements of y are resampled). This
leads to z ∶= y + 𝑐s1 being completely uniform after the z-check, and as such it can

be generated as z
$
← 𝑆ℓ𝛾1−𝛽 in the simulator.

However, in Transalt-r0 , the actions are different, as in the case of the r0-check 𝜉 is
set to 1, while in the case of z-check 𝜉 is set to ℓ. So swapping the checks changes the

distribution of z, and simulating it as z
$
← 𝑆ℓ𝛾1−𝛽 becomes invalid.

We hypothesize that we can use the hybrid Hyb𝑘3, listed in Figure 8.7, to step
towards a version of the scheme where a reject of the r0-check leads to all elements
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Transalt-r0(𝑀):
1: y ∶= ⊥
2: 𝜉 ∶= ℓ
3: done ∶= false
4: repeat
5: y1…𝜉 ← 𝑌
6: w1 ∶= HighBits(Ay)
7: 𝑐 ← 𝐶
8: z ∶= y + 𝑐s1
9: r0 ∶= LowBits(Ay − 𝑐s2)

10: if ‖r0‖∞ ≥ 𝛾2 − 𝛽 then
11: 𝜉 = 1
12: continue
13: if ‖z‖∞ ≥ 𝛾1 − 𝛽 then
14: 𝜉 = ℓ
15: continue
16: done ∶= true
17: until not done
18: H(w1, 𝑀) ∶= 𝑐
19: return (w1, z)

Figure 8.6: Transcript generator for the alt-r0-modified scheme. Lines 5 to 6 describe
Comalt-r0 and Lines 8 to 16 describe Respalt-r0 .
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Hyb𝑘3(𝑀):
1: y ∶= ⊥
2: 𝜉 ∶= ℓ
3: 𝑖 ∶= 0
4: repeat
5: (w1, y) ← Comalt-r0(sk, y, 𝜉 )
6: 𝑐 ← 𝐶
7: if 𝑖 ≥ 𝑘 then
8: (z, 𝜉 ) ← Respalt-r0 (w1, 𝑐, y)
9: else

10: z ← Resp (w1, 𝑐, y)

11: 𝑖 ∶= 𝑖 + 1
12: until z ≠ ⊥
13: H(w1, 𝑀) ∶= 𝑐
14: return (w1, z)

Figure 8.7: Hybrid signing oracle which, in the first 𝑘 iterations, always sets 𝜉 to ℓ
when the z-check leads to an abort; and which in all subsequent iterations sets 𝜉 to the
index of the element in z that lead to an abort during the z-check. When increasing 𝑘,
Hyb𝑘3 is gradually transformed from Hyb03 = Transalt-r0 to Hyb∞3 = Trans.

of y being resampled. Then, as both checks will lead to 𝜉 ∶= ℓ, we can swap the
checks back to their original order, and the regular Dilithium simulator will apply
(Figure 8.4). In the rest of this section follows a heuristic argument that quantifies the
security loss of the hybrid step.

We replace Comalt-r0 by Com and Respalt-r0 by Resp respectively. Com always
regenerates all elements of y, while Comalt-r0 takes 𝜉 as an argument. I.e., Com(sk) is
equal to Comalt-r0(sk, ⊥, 𝜉 ∶= ℓ). Respalt-r0 does differ from Resp: In Respalt-r0 , if the
r0-check fails, then it will return 𝜉 ∶= 1. Resp is the same as in vanilla Dilithium, i.e.,
if the r0-check fails, then it will return 𝜉 ∶= ℓ instead of 𝜉 ∶= 1. The behavior around
the z-check remains the same, i.e., if the z-check leads to an abort the function returns
𝜉 ∶= ℓ.

The execution of Hyb𝑘3 and Hyb𝑘+13 is equal when any iteration up to iteration
𝑘 leads to a success. Only in the next iteration 𝑘 + 1 does the change of 𝜉 impact
the execution, because it may lead to a different value of y. This difference may
propagate to any of the subsequent iterations, leading to a change of output when the
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algorithm finally succeeds. As such, the distance of the outputs of the two hybrids
will never be greater than the distance between the different ys during iteration 𝑘 + 1.
In other words, we need to bound the distance between Comalt-r0(sk, y, 𝜉 = 1) and
Comalt-r0(sk, y, 𝜉 = ℓ).

For convenience, define vtail = (v2, … , vℓ) for any kind of v, 𝑌 the output distribution
of Comalt-r0(sk, y, ℓ), and 𝑌 ′ the output distribution of Com(sk) = Comalt-r0(sk, y, 1).
We aim to find a bound for the statistical distance

Δ(𝑌 ; 𝑌 ′) = Δ(𝑌tail; 𝑌 ′tail) =
1
2

∑
ytail∈ ̃𝑆ℓ−1𝛾1

|Pr[𝑌tail = ytail] − Pr[𝑌 ′tail = ytail]| .

𝑌tail is equal to uniformly sampling from ̃𝑆ℓ−1𝛾1 , i.e., Pr[𝑌tail = ytail] = 1/# ̃𝑆ℓ−1𝛾1 . On
the other hand, 𝑌 ′tail only contains remaining y tails from the previous iteration. If
𝜉 = 1, then the previous iteration will have aborted because of a rejecting r0-check.
In that case, we struck a y1 value that when joined with ytail (together with some A, 𝑐
and s2) led to a rejecting r0. I.e.,

Pr[𝑌 ′tail = ytail] = ∑
y1∈ ̃𝑆𝛾1

Pr [𝑌1 = y1 and 𝑌tail = ytail | ‖r0‖∞ ≥ 𝛾2 − 𝛽]

= 1
# ̃𝑆ℓ𝛾1

∑
y1∈ ̃𝑆𝛾1

Pr [‖r0‖∞ ≥ 𝛾2 − 𝛽 | 𝑌1 = y1 and 𝑌tail = ytail]
Pr [‖r0‖∞ ≥ 𝛾2 − 𝛽]

.

In the literature, it has been heuristically assumed that the low order bits of r are
uniformly distributed modulo 2𝛾2. If that is the case, the r0-check rejection probability
is indeed independent of anything else, and the ratio inside the sum is equal to 1.
However, absurd examples like when A = 0 indicate that this cannot be the case. The
rejection probability depends directly on A. Fortunately, we can determine the range
of this probability for “reasonable” values of A. We will return to what “reasonable”
values of A could look like.

Consider the value rproto = Atailytail−𝑐s2, which corresponds to the case that y1 = 0.
‖LowBits(rproto)‖∞ might exceed 𝛾2−𝛽, or not; we do not know. However, we can look

at every other value for y1 and complete the expression. If ‖LowBits(rproto + A1y1)‖∞
exceeds 𝛾2 − 𝛽, then any of the coefficients in rproto + A1y1 mod 2𝛾2 must be in the
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range [𝛾2 − 𝛽, 𝛾2 + 𝛽]. This can be arranged when any of the 𝑘 ⋅ 𝑛 coefficients in A1 is
set accordingly. This probability is equal to

𝑝′ = (1 −
𝛽 + 1
𝛾2

)
𝑛⋅𝑘

, (8.6)

which is, unsurprisingly, equal to the heuristically computed probability that a random
r0 is rejected [DKLL+20, Equation 5].

However, recall that we are computing the probability that a randomly generated
matrix A satisfies the property that r0 leads to a reject for some rproto and y1. For a
number of 𝑚 rejected r0, generated from a number of # ̃𝑆𝛾1 − 1 (i.e., excluding y1 = 0)
different possible y1, the probability that A satisfies that number of rejects follows
the binomial distribution 𝑚 = 𝐵(# ̃𝑆𝛾1 − 1, 𝑝′). One could see this distribution as (a
bound of) the likeliness of A given if 𝑚 out of # ̃𝑆𝛾1 − 1 of the possible y1 would lead
to a reject. We look at the confidence interval where at most {2−128, 2−192, 2−256} of
the distribution’s area falls outside the interval for Dilithium{2,3,5} respectively. This
gives us a lower and upper bound for the total number of y1 values for “reasonable”
values of A that lead to a r0-check reject, which we will call 𝑚lo and 𝑚hi. We plug this
into the expression for Pr[𝑌 ′tail = ytail] and obtain

1
# ̃𝑆ℓ𝛾1

∑
y1∈ ̃𝑆𝛾1

𝑚lo

𝑚hi
≤ Pr[𝑌 ′tail = ytail] ≤

1
# ̃𝑆ℓ𝛾1

∑
y1∈ ̃𝑆𝛾1

𝑚hi

𝑚lo

1
# ̃𝑆ℓ−1𝛾1

⋅
𝑚lo

𝑚hi
≤ Pr[𝑌 ′tail = ytail] ≤

1
# ̃𝑆ℓ−1𝛾1

⋅
𝑚hi

𝑚lo
.

This leads to

Δ(𝑌 ; 𝑌 ′) ≤ ∑
ytail∈ ̃𝑆ℓ−1𝛾1

1
# ̃𝑆ℓ−1𝛾1

(1 −
𝑚lo

𝑚hi
) = 1 −

𝑚lo

𝑚hi
,

which, for Dilithium{2,3,5}, is approximately {2−2289, 2−2544, 2−2543}.

In wrapping up this hybrid step, we multiply this distance with the probability that
we reach iteration 𝑘 + 1, which is 𝑝𝑘. Summing over all signing-oracle queries and
taking the limit of 𝜅 to infinity results in
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ΔTransalt-r0→Trans ≤ lim
𝜅→∞

(
𝑞𝑆−1
∑
𝑖=0

(𝑝𝜅 +
𝜅−1
∑
𝑗=0

𝑝𝑗Δ(𝑌 ; 𝑌 ′))) = 𝑞𝑆
Δ(𝑌 ; 𝑌 ′)
1 − 𝑝

. (8.7)

What are “reasonable” values of A? The security argument of that we just
described is based on the idea that A should have a “reasonable” value. This means
that we assume that, for all possible ytail, the value of A is such that the probability
that the r0-check leads to an abort is close to the probability that the r0-check leads
to an abort if all of y was freshly sampled. Examples of bad values of A are when a
polynomial in the first column of A is equal to 0, or when many of the coefficients in
those polynomials A are close to a small factor of 2𝛾2. Ideally, we would like to fix the
(reasonable) value of A ahead of time (i.e., during KeyGen) and then show that this
value leads to a good rejection probability for all ytail. However, we were not able to
find a good description of the class of “reasonable” values of A, and were therefore
forced to rely on a more ad-hoc argument—expressing A in terms of ytail instead of
the other way around. Still, because the probability space of y1 is so incredibly big
(with more than 4000 bits of entropy for all variants), this results in a very small (even
in cryptographic terms) statistical distance (≤ 2−2289). As such, we expect that the
security loss of this hybrid step is minimal.

8.A.3 Performance

The proposal described in this appendix adds another performance improvement
to the Dilithium scheme; this one more substantial than the first. The combination
of both alterations, which we denote by alt, results in the largest improvement in
signing speed.

In Table 8.3, we list the updated number of primitive operations, and in Table 8.4 we
list the updated speedups for optimized implementations. In Table 8.4, we observe new
speedups ranging from 15% for Dilithium2 on Cortex-M3, up to 23% for Dilithium3
with AVX2, when using the combination of both alterations to the scheme.
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8 Dilithium nonce recycling

Table 8.4: Extension of Table 8.2. Average latencies of Dilithium signature generation
on AVX2, Cortex-M4, and Cortex-M3. Cycle counts are listed in kilocycles and
include the computation of A. Percentages report the total speedup of applying both
proposals compared to the baseline (vanilla) Dilithium. Note that these results cannot
be compared with [GKS21], because the parameters of Dilithium have been updated
for round 3 of the NIST competition (and so our baseline is an update of [GKS21,
Strategy 2]).

baseline alt-z alt-r0 alt

Dilithium2
AVX2 367 345 318 309 (16%)
Cortex-M4 4 458 4 168 3 810 3 698 (17%)
Cortex-M3 7 591 7 275 6 595 6 472 (15%)

Dilithium3
AVX2 564 532 445 434 (23%)
Cortex-M4 7 137 6 889 5 873 5 736 (20%)
Cortex-M3 12 316 12 015 10 177 10 016 (19%)

Dilithium5
AVX2 691 661 561 549 (20%)
Cortex-M4 9 447 9 079 7 899 7 766 (18%)
Cortex-M3 –a –a –a –a

a Not enough SRAM available to store Dilithium5 state.
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8.B Derivation of Equation (8.1)

ΔSignalt→Progalt

𝑝,𝜖0,𝜖 = lim
𝜅→∞

(
𝑞𝑆−1
∑
𝑖=0

(𝑝𝜅 + 𝛿𝑖,0,𝜖0 − 𝛿𝑖,0,𝜖 +
𝜅−1
∑
𝑗=0

𝛿𝑖,𝑗,𝜖))
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𝜅→∞

(𝑞𝑆𝑝𝜅 +
𝑞𝑆−1
∑
𝑖=0
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∑
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𝛿𝑖,𝑗,𝜖))
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∑
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∞
∑
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∑
𝑖=0

(𝛿𝑖,0,𝜖0 − 𝛿𝑖,0,𝜖 +
∞
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∞
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∞
∑
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∑
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(1 − 𝑝)2
)

=
𝑞𝑆−1
∑
𝑖=0

(𝛿𝑖,0,𝜖0 − 𝛿𝑖,0,𝜖 + 𝜖
𝑞𝐻

1 − 𝑝
+ 𝜖

𝑖 + 𝑝
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∑
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9 Conclusion

Speed. In this thesis, we explored methods for polynomial multiplication that are
faster than the original method proposed for Dilithium. The first implementations
of Dilithium [GKOS18; RGCB19]—including ours ([GKS21])—followed the strategy
of the Dilithium team, using Cooley–Tukey butterflies for the forward NTT and
Gentleman–Sande butterflies for the inverse NTT. We found that we could improve
the speed of the inverse NTT, by using Cooley–Tukey instead of Gentleman–Sande
butterflies, and adopting the technique mentioned in [ACCH+22, Appendix D].

From the start, Dilithium was designed to use polynomials modulo 𝑞 = 8380417,
to enable very fast polynomial multiplications using the NTT. However, we found
that—for some polynomial multiplications in the signing algorithm—we are not bound
to the original Dilithium 𝑞. In Chapter 4, we explored the idea of using a multi-moduli
NTT to compute the 32-bit polynomial multiplications in smaller 16-bit chunks. Our
experiments did not show a significant performance increase in the general case, i.e.,
when using this method to optimize (unbounded) polynomial multiplications in 𝑅𝑞.
However, in Chapter 5, we found that—because of the tighter bounds—𝑐s1 and 𝑐s2
could be computed modulo 𝑞′ ∈ {257, 769}, which led to polynomial multiplications
that are 38% faster for 𝑞′ = 257 and 33% faster for 𝑞′ = 769, compared to 𝑞 = 8380417.
Moreover, others have found speedups when applying the multi-moduli idea to the
computation of 𝑐t0 (using 𝑞′0 = 769 and 𝑞′1 = 3329) on Cortex-M3 [HAZD+24].

One recurring theme throughout this thesis is that we see a large part of Dilithi-
um’s computation time is spent in SHAKE. Even with the recent work of [HAZD+24],
SHAKE still takes up 59%–84% of Dilithium’s computation time, depending on the al-
gorithm and parameter set. As such, platforms with hardware acceleration for SHAKE
have a clear advantage over platforms that don’t have any hardware acceleration for
SHAKE.

157



9

9 Conclusion

Recent improvements in speed. Recently it was found that 16-bit NTTs could be
improved by using Plantard reduction [Pla21] (instead of Montgomery reduction) for
the internal twiddle-factor multiplications [HZZL+22]. This improvement is also ap-
plicable to Dilithium and has been applied in [HAZD+24]. [HAZD+24] also improved
the SHAKE implementation from the eXtended Keccak Code Package (XKCP),1 and
with their improvements, they currently2 hold the speed records for Dilithium on
Cortex-M3 and Cortex-M4.

Memory usage. In Chapter 6, we built a Dilithium implementation that was op-
timized for memory usage rather than for speed, as many devices only have a very
limited amount of SRAM. In this implementation, we were able to use the 16-bit NTTs
to reduce the memory usage of the 𝑐s1 and 𝑐s2 polynomial multiplications from 2
KiB bytes to 1 KiB. We found that, in the signing algorithm, the generation of both
the matrix A as well as the vector y can be streamed for a slowdown factor of about
3.3–3.9.

Before our work, it was not clear whether Dilithium was a scheme that could
reasonably fit into 16 KiB of memory. In our memory-optimized implementation,
we were able to fit Dilithium2 and Dilithium3 in 8 KiB of SRAM, with Dilithium5
slightly above at 8.1 KiB. We even managed to reduce the memory usage of signature
verification to only 3 KiB of memory. These figures show that Dilithium is a practical
scheme for use on memory-constrained devices. In [NIST22a, Section 2.2.2], NIST
recognized our findings and used them in their decision to standardize Dilithium.

Deployment. In Chapter 7, we added support for verification with Dilithium in
the hardware security engine (HSE) of the S32G274A vehicle network processor.
The S32G274A HSE does not have hardware acceleration for SHAKE. This would
not be a problem for Dilithium verification were it not for the hashing of the boot
image. For a boot image of 128 KiB, most of the verification is spent compressing the
message, leading to a relatively slow image verification. The S32G274A provides a
mechanism to overcome this, by verifying the Dilithium signature (“initial proof of
authenticity”) when the image is installed, and constructing an optimized “reference
proof of authenticity” for use during boot. However, not all chips provide such a

1https://github.com/XKCP/XKCP
2As of February 2024.
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mechanism. In that case, the only alternative is to pre-hash the image using a hash
for which hardware acceleration is present on the chip (e.g., SHA2), and then verify
the signature over the hash instead. When using pre-hashed Dilithium variants,
implementations must domain-separate the pre-hashed variant from other Dilithium
variants, and bind the signer’s public key to the signed image. There exists a risk
that these extra measures will be forgotten or improperly implemented, which could
lead to weaknesses in protocols. Hence, we should not overlook that the proper fix
is to add hardware acceleration for SHAKE to the chip. Unfortunately, given the
lifetime of many common chip families, it will realistically take years and maybe even
decades until we can expect SHAKE acceleration to be as mainstream as acceleration
for SHA2.

Outlook. The NIST competition has attracted the attention of many researchers to
the evaluation criteria that NIST stipulated. As such, there has been a lot of research
into the implementation of fast and small post-quantum implementations, both in
software as well as in hardware. There have also been plenty of projects dedicated
to the analysis of side-channels and fault-tolerance in Dilithium (e.g., [ABCH+23;
BVCM+23; CGTZ23; CKAM+21; EFGT16; FDK20; HLKL+21; IMSS+22; Jen24; KAA21;
MGTF19; MUTS22; RCDB23; RJHC+18]3), leading to good understanding of the weak
spots in the algorithm. Even so, there still only a handful of public side-channel
and fault protected implementations of Dilithium. I believe it would benefit the
community to focus on constructing more protected implementations, rather than
exploiting weaknesses in unprotected implementations.

Aside from side-channel protected implementations, there is more work to do
evaluating the candidates from the NIST “Additional Signatures” standardization
process [NIST23a]. Although the evaluation of the new NIST schemes is important,
I hope that we will also find time to increase our understanding of other post-quantum
authentication schemes that are more advanced than regular digital signatures, like
zero-knowledge proofs [LNP22], designated verifier signatures [BFGJ+22; HKKP22;
JSI96], and (linkable) ring signatures [BKP20; LW05; RST01].

3Alongside these attacks, there is also work that attacks the NTT in other lattice schemes (like Kyber and
NTRU). Many other attacks are also applicable to the usage of the NTT in Dilithium.
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Summary

Digital signature schemes are one of the core building blocks in modern cryptography.
They protect data against any kind of unauthorized modification. Unfortunately, most
digital signature schemes that are currently in use will be broken with the advent of
cryptographically relevant quantum computers. In order to remain secure in their
presence, we must research new post-quantum digital signature schemes. One of
these schemes is the Dilithium signature scheme. In this thesis, we evaluate whether
Dilithium is suitable for implementation and deployment on embedded platforms.

This question is evaluated from different perspectives. In Chapters 4, 5 and 8,
we look at the speed of the scheme. That is, we evaluate how long it takes to run
Dilithium’s algorithms, and how their run times can be further optimized. In Chapter 6,
we look at its memory usage. In Chapter 7, we implement the scheme on the S32G274A
vehicle network processor and add it as an option from image verification in the chip’s
secure-boot mechanism.

Chapter 4. In this chapter, we present implementations of the Dilithium scheme for
the two types of microcontrollers Arm Cortex-M3 and Cortex-M4. On Cortex-M3, one
of the big challenges is the availability of appropriate instructions for multiplication, as
the most powerful multiply instructions have timings that depend on their data. This
leaks information about the numbers being multiplied, which makes the instructions
unsuitable for secret cryptographic computations. To solve this issue, we propose
two new routines for integer multiplication on Cortex-M3 that are based on smaller
instructions that all execute in constant-time.

Chapter 5. During Dilithium’s signature generation algorithm, some polynomials
are always “small”, i.e. all of their coefficients are always between −𝛽 and 𝛽 (where
𝛽 ∈ {78, 196, 120}). This allows us to compute their polynomial products modulo a
smaller value of 𝑞′ ∈ {257, 769} instead of the larger Dilithium modulus 𝑞 = 8380417.
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Summary

With this in mind, we build new optimized NTT and polynomial multiplication
algorithms using the smaller moduli and integrate them into the signing algorithm
for Arm Cortex-M4.

Chapter 6. Most microcontroller implementations of Dilithium use 50 to 100 KiB
of RAM, depending on the Dilithium variant that is used. However, many chips only
have up to 8 to 16 KiB of RAM, preventing Dilithium from being used on these devices.
In this chapter, we implement the Dilithium algorithm, but optimize for memory
usage rather than speed. This results in the first implementation of Dilithium for
which the recommended parameter set requires less than 7 KiB of memory for key
and signature generation and less than 3 KiB of memory for signature verification.

Chapter 7. In this chapter, we investigate the practical impact of migrating the
secure boot flow on a vehicle network processor towards post-quantum cryptography.
We create a fault-attack-resistant (against single-targeted fault) implementation of
Dilithium signature verification, which we incorporate into the secure boot flow of
the Hardware Security Engine of the S32G274A.

Chapter 8. The Dilithium signature generation is built around a rejection-sampling
loop: First a nonce (number-only-used-once) vector is generated, then a candidate sig-
nature is generated, and finally the algorithm checks whether the candidate signature
does not leak any information about the secret key. If the candidate signature is safe
to be output, the signing algorithm returns that value; otherwise, all the intermediate
results are discarded, and the process is restarted using a new nonce vector. This
routine is repeated until a safe signature is found. We propose a modification to
the Dilithium algorithm where—when a candidate signature is deemed unsafe—we
reuse some of the nonce material that is still safe for usage in subsequent iterations of
the rejection-sampling loop, instead of completely discarding all the nonce material.
With our modification, only part of the nonce vector needs to be regenerated, which
slightly improves the speed of the Dilithium signing algorithm.
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Samenvatting

Digitale handtekeningsystemen zijn een veelgebruikte bouwsteen in de cryptografie.
Ze beveiligen digitale informatie (data) tegen ongeautoriseerde wijzigingen. Wanneer
cryptografisch relevante kwantumcomputers in de toekomst gerealiseerd worden,
zullen deze de meest gebruikte digitale handtekeningsystemen eenvoudig kunnen kra-
ken. Daarom moet er onderzoek worden gedaan naar nieuwe post-kwantum digitale
handtekeningsystemen die nog steeds veilig zijn wanneer dit soort kwantumcompu-
ters daadwerkelijk bestaan. Een van de opties is het handtekeningsysteem Dilithium.
In dit proefschrift beoordelen we of Dilithium geschikt is voor implementatie en
gebruik in ingebedde systemen.

We benaderen deze vraag vanuit verschillende invalshoeken. In Hoofdstukken 4, 5
en 8 kijken we naar de snelheid van het systeem. Oftewel, we bekijken de rekentijd van
Dilithium, en we zoeken optimalisaties om de duur verder te verkorten. In Hoofdstuk 6
kijken we naar de hoeveelheid geheugen die het systeem gebruikt; en in Hoofdstuk 7
gebruiken we het systeem als onderdeel van het secure-boot mechanisme van de
S32G274A voertuignetwerkprocessor.

Hoofdstuk 4. In dit hoofdstuk presenteren we implementaties van Dilithium voor
twee categorieën van microcontrollers, namelijk de Arm Cortex-M3 en Cortex-M4.
Een belangrijk obstakel op Cortex-M3 is de afwezigheid van snelle instructies voor
vermenigvuldiging, omdat de meest voor de hand liggende instructies een uitvoertijd
hebben die afhankelijk is van de data waarop ze uitgevoerd worden. Dit lekt informatie
over de getallen die vermenigvuldigd worden, wat de instructies ongeschikt maakt
voor cryptografische berekeningen op geheime data. Daarom gebruiken we twee
nieuwe procedures voor de vermenigvuldiging van getallen op Cortex-M3, die intern
gebruik maken van instructies die altijd dezelfde uitvoertijd hebben.
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Hoofdstuk 5. In het algoritme wat handtekeningen genereert zijn er een aantal
polynomen die altijd “klein” zijn; oftewel, al hun coëfficiënten hebben een waarde
tussen −𝛽 en 𝛽 (met 𝛽 ∈ {78, 196, 120}). Dit kunnen we gebruiken om het verme-
nigvuldigen van deze polynomen te versnellen door kleinere moduli 𝑞′ ∈ {257, 769}
te gebruiken in plaats van de grotere Dilithium-modulus 𝑞 = 8380417. We maken
nieuwe geoptimaliseerde NTT-algoritmes gespecialiseerd voor deze kleinere moduli
en gebruiken ze in het genereren van handtekeningen op Cortex-M4.

Hoofdstuk 6. De meeste implementaties van Dilithium voor microcontrollers ge-
bruiken 50 tot 100 KiB geheugen, afhankelijk van de variant van Dilithium die gebruikt
wordt. Veel chips hebben echter maar 8 tot 16 KiB geheugen beschikbaar, waardoor
er geen implementaties zijn die op deze chips uitgevoerd kunnen worden. In dit
hoofdstuk implementeren we het Dilithium-algoritme opnieuw, maar dit keer opti-
maliseren we voor een vermindering in geheugengebruik in plaats van uitvoertijd.
Dit leidt tot de ontwikkeling van de eerste implementatie van Dilithium waarvan de
standaardvariant minder dan 7 KiB geheugen gebruikt voor het genereren van sleutels
en handtekeningen, en minder dan 3 KiB geheugen gebruikt voor het controleren van
handtekeningen.

Hoofdstuk 7. In dit hoofdstuk kijken we naar de impact die de migratie naar
post-kwantum cryptografie heeft op de secure-boot implementaties van voertuig-
netwerkprocessors. Hiervoor maken we een glitch-bestendige implementatie voor
de controle van Dilithium-handtekeningen, en integreren we deze in de secure-boot
implementatie van de Hardware Security Engine van de S32G274A chip.

Hoofdstuk 8. Het Dilithium-handtekeningenalgoritme doet meestal meerdere po-
gingen tot het genereren van een handtekening, voordat er succesvol een handte-
kening gemaakt kan worden. Er wordt eerst een uniform-willekeurige nonce-vector
gegenereerd, waarna er met die nonce-vector een voorlopige handtekening wordt
gemaakt. Tenslotte controleert het algoritme of de voorlopige handtekening geen
informatie over de geheime sleutel bevat. Als dit wél het geval is, dan worden alle tus-
sentijdse variabelen gewist en start het proces opnieuw met een nieuwe nonce-vector.
Deze procedure wordt dan herhaald totdat er een geschikte handtekening is gevonden.
In dit hoofdstuk stellen we een aanpassing aan het algoritme voor, die – wanneer
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een voorlopige handtekening ongeschikt blijkt – een deel van de nonce-vector her-
gebruikt in opvolgende pogingen van het algoritme, in plaats van de nonce-vector
altijd volledig te wissen. Met onze aanpassing hoeft soms alleen een deel van de
nonce-vector opnieuw gegenereerd te worden, wat leidt tot een snellere versie van
het handtekeningenalgoritme.
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