
Compact Dilithium on Cortex M3 and Cortex M4

Denisa Greconici Matthias Kannwischer Daan Sprenkels

30 October 2020

Institute for Computing and Information Sciences – Digital Security
Radboud University Nijmegen



Table of contents

1. Introduction

2. Constant time multiplications on Cortex-M3

3. Optimizing performance

4. Optimization memory

5. Results

6. Conclusion

1



Introduction



NIST Post-Quantum Standardization Competition

I 2016 – NIST calls for proposals for PQC algorithms

• Key Encapsulation Mechanisms (KEMs) and Digital Signatures

I 2017 – 69 candidates qualified for round 1

I 2019 – 26 candidates qualified for round 2

I July 2020 – round 3 candidates announced

• 7 finalists

I KEMs (Classic McEliece, Kyber, NTRU and Saber)
I Signatures (Dilithium, Falcon, and Rainbow)

• 8 alternative schemes

I KEMs (BIKE, FrodoKEM, HQC, NTRU Prime, SIKE )
I Signatures (GeMSS, Picnic, SPHINCS+)

2



NIST Post-Quantum Standardization Competition

I 2016 – NIST calls for proposals for PQC algorithms

• Key Encapsulation Mechanisms (KEMs) and Digital Signatures

I 2017 – 69 candidates qualified for round 1

I 2019 – 26 candidates qualified for round 2

I July 2020 – round 3 candidates announced

• 7 finalists

I KEMs (Classic McEliece, Kyber, NTRU and Saber)
I Signatures (Dilithium, Falcon, and Rainbow)

• 8 alternative schemes

I KEMs (BIKE, FrodoKEM, HQC, NTRU Prime, SIKE )
I Signatures (GeMSS, Picnic, SPHINCS+)

2



NIST Post-Quantum Standardization Competition

I 2016 – NIST calls for proposals for PQC algorithms

• Key Encapsulation Mechanisms (KEMs) and Digital Signatures

I 2017 – 69 candidates qualified for round 1

I 2019 – 26 candidates qualified for round 2

I July 2020 – round 3 candidates announced

• 7 finalists

I KEMs (Classic McEliece, Kyber, NTRU and Saber)
I Signatures (Dilithium, Falcon, and Rainbow)

• 8 alternative schemes

I KEMs (BIKE, FrodoKEM, HQC, NTRU Prime, SIKE )
I Signatures (GeMSS, Picnic, SPHINCS+)

2



NIST Post-Quantum Standardization Competition

I 2016 – NIST calls for proposals for PQC algorithms

• Key Encapsulation Mechanisms (KEMs) and Digital Signatures

I 2017 – 69 candidates qualified for round 1

I 2019 – 26 candidates qualified for round 2

I July 2020 – round 3 candidates announced

• 7 finalists

I KEMs (Classic McEliece, Kyber, NTRU and Saber)
I Signatures (Dilithium, Falcon, and Rainbow)

• 8 alternative schemes

I KEMs (BIKE, FrodoKEM, HQC, NTRU Prime, SIKE )
I Signatures (GeMSS, Picnic, SPHINCS+)

2



NIST Post-Quantum Standardization Competition

I 2016 – NIST calls for proposals for PQC algorithms

• Key Encapsulation Mechanisms (KEMs) and Digital Signatures

I 2017 – 69 candidates qualified for round 1

I 2019 – 26 candidates qualified for round 2

I July 2020 – round 3 candidates announced

• 7 finalists

I KEMs (Classic McEliece, Kyber, NTRU and Saber)
I Signatures (Dilithium, Falcon, and Rainbow)

• 8 alternative schemes

I KEMs (BIKE, FrodoKEM, HQC, NTRU Prime, SIKE )
I Signatures (GeMSS, Picnic, SPHINCS+)

2



NIST Post-Quantum Standardization Competition

I 2016 – NIST calls for proposals for PQC algorithms

• Key Encapsulation Mechanisms (KEMs) and Digital Signatures

I 2017 – 69 candidates qualified for round 1

I 2019 – 26 candidates qualified for round 2

I July 2020 – round 3 candidates announced

• 7 finalists

I KEMs (Classic McEliece, Kyber, NTRU and Saber)
I Signatures (Dilithium, Falcon, and Rainbow)

• 8 alternative schemes

I KEMs (BIKE, FrodoKEM, HQC, NTRU Prime, SIKE )
I Signatures (GeMSS, Picnic, SPHINCS+)

2



NIST Post-Quantum Standardization Competition

I 2016 – NIST calls for proposals for PQC algorithms

• Key Encapsulation Mechanisms (KEMs) and Digital Signatures

I 2017 – 69 candidates qualified for round 1

I 2019 – 26 candidates qualified for round 2

I July 2020 – round 3 candidates announced

• 7 finalists
I KEMs (Classic McEliece, Kyber, NTRU and Saber)
I Signatures (Dilithium, Falcon, and Rainbow)

• 8 alternative schemes
I KEMs (BIKE, FrodoKEM, HQC, NTRU Prime, SIKE )
I Signatures (GeMSS, Picnic, SPHINCS+)

2



Dilithium

I Signature scheme

I Part of CRYSTALS (with Kyber)

I One of the 3rd round finalists

I Fiat-Shamir with aborts

I Module-LWE and Module-SIS

I Small keys and signatures

I Operates in the polynomial ring Rq = Zq[X ]/(X 256 + 1), with q = 8380417
⇒ Allows efficient polynomial multiplication with NTT

I 4 security levels (3 of them target NIST security levels 1-3)

3



Dilithium

I Signature scheme

I Part of CRYSTALS (with Kyber)

I One of the 3rd round finalists

I Fiat-Shamir with aborts

I Module-LWE and Module-SIS

I Small keys and signatures

I Operates in the polynomial ring Rq = Zq[X ]/(X 256 + 1), with q = 8380417
⇒ Allows efficient polynomial multiplication with NTT

I 4 security levels (3 of them target NIST security levels 1-3)

3



Dilithium

I Signature scheme

I Part of CRYSTALS (with Kyber)

I One of the 3rd round finalists

I Fiat-Shamir with aborts

I Module-LWE and Module-SIS

I Small keys and signatures

I Operates in the polynomial ring Rq = Zq[X ]/(X 256 + 1), with q = 8380417
⇒ Allows efficient polynomial multiplication with NTT

I 4 security levels (3 of them target NIST security levels 1-3)

3



Dilithium

I Signature scheme

I Part of CRYSTALS (with Kyber)

I One of the 3rd round finalists

I Fiat-Shamir with aborts

I Module-LWE and Module-SIS

I Small keys and signatures

I Operates in the polynomial ring Rq = Zq[X ]/(X 256 + 1), with q = 8380417
⇒ Allows efficient polynomial multiplication with NTT

I 4 security levels (3 of them target NIST security levels 1-3)

3



Dilithium

I Signature scheme

I Part of CRYSTALS (with Kyber)

I One of the 3rd round finalists

I Fiat-Shamir with aborts

I Module-LWE and Module-SIS

I Small keys and signatures

I Operates in the polynomial ring Rq = Zq[X ]/(X 256 + 1), with q = 8380417
⇒ Allows efficient polynomial multiplication with NTT

I 4 security levels (3 of them target NIST security levels 1-3)

3



The Number-Theoretic Transform (NTT)

I Fast Fourier Transform (FFT) in finite field

I Let g = g0 + g1X + ...+ gn−1X
n−1, polynomial in Rq

I Representation of polynomial g :

• By its coefficients: g0, g1...gn−1

• By evaluating g at the powers of the n’th primitive root of unity:
g(ω0), g(ω1)...g(ωn−1)

I Formal definition of the NTT in Dilithium

• ĝ = NTT (g) =
∑n−1

i=0 ĝiX
i , with ĝi =

∑n−1
j=0 ψ

jgjω
ij ; and

• g = INTT (ĝ) =
∑n−1

i=0 giX
i , with gi = n−1ψ−i

∑n−1
j=0 ĝjω

−ij .

I Polynomial Multiplication in Rq

a · b = INTT(NTT(a) ◦ NTT(b))

4



The Number-Theoretic Transform (NTT)

I Fast Fourier Transform (FFT) in finite field

I Let g = g0 + g1X + ...+ gn−1X
n−1, polynomial in Rq

I Representation of polynomial g :

• By its coefficients: g0, g1...gn−1

• By evaluating g at the powers of the n’th primitive root of unity:
g(ω0), g(ω1)...g(ωn−1)

I Formal definition of the NTT in Dilithium

• ĝ = NTT (g) =
∑n−1

i=0 ĝiX
i , with ĝi =

∑n−1
j=0 ψ

jgjω
ij ; and

• g = INTT (ĝ) =
∑n−1

i=0 giX
i , with gi = n−1ψ−i

∑n−1
j=0 ĝjω

−ij .

I Polynomial Multiplication in Rq

a · b = INTT(NTT(a) ◦ NTT(b))

4



The Number-Theoretic Transform (NTT)

I Fast Fourier Transform (FFT) in finite field

I Let g = g0 + g1X + ...+ gn−1X
n−1, polynomial in Rq

I Representation of polynomial g :

• By its coefficients: g0, g1...gn−1

• By evaluating g at the powers of the n’th primitive root of unity:
g(ω0), g(ω1)...g(ωn−1)

I Formal definition of the NTT in Dilithium

• ĝ = NTT (g) =
∑n−1

i=0 ĝiX
i , with ĝi =

∑n−1
j=0 ψ

jgjω
ij ; and

• g = INTT (ĝ) =
∑n−1

i=0 giX
i , with gi = n−1ψ−i

∑n−1
j=0 ĝjω

−ij .

I Polynomial Multiplication in Rq

a · b = INTT(NTT(a) ◦ NTT(b))

4



Dilithium simplified

5



Dilithium simplified

5



Target platforms

I Arm Cortex M4(STM32F407-DISCOVERY)

• NIST choice for PQC
• 32-bit, ARMv7e-M
• 1 MiB ROM, 196 KB RAM, 168 MHz
• 32-bit multiplications in 1 cycle

(UMULL, SMULL, UMLAL, SMLAL)

I Arm Cortex M3 (AtmelSAM3X8E )

• Arduino Due
• 32-bit, ARMv7-M
• 512 KiB Flash, 96 KB RAM, 84 MHz
• Variable time 32-bit multiplications !

6



Target platforms

I Arm Cortex M4(STM32F407-DISCOVERY)

• NIST choice for PQC
• 32-bit, ARMv7e-M
• 1 MiB ROM, 196 KB RAM, 168 MHz
• 32-bit multiplications in 1 cycle

(UMULL, SMULL, UMLAL, SMLAL)

I Arm Cortex M3 (AtmelSAM3X8E )

• Arduino Due
• 32-bit, ARMv7-M
• 512 KiB Flash, 96 KB RAM, 84 MHz
• Variable time 32-bit multiplications !

6



Target platforms

I Arm Cortex M4(STM32F407-DISCOVERY)

• NIST choice for PQC
• 32-bit, ARMv7e-M
• 1 MiB ROM, 196 KB RAM, 168 MHz
• 32-bit multiplications in 1 cycle

(UMULL, SMULL, UMLAL, SMLAL)

I Arm Cortex M3 (AtmelSAM3X8E )

• Arduino Due
• 32-bit, ARMv7-M
• 512 KiB Flash, 96 KB RAM, 84 MHz
• Variable time 32-bit multiplications !

6



Target platforms

I Arm Cortex M4(STM32F407-DISCOVERY)

• NIST choice for PQC
• 32-bit, ARMv7e-M
• 1 MiB ROM, 196 KB RAM, 168 MHz
• 32-bit multiplications in 1 cycle

(UMULL, SMULL, UMLAL, SMLAL)

I Arm Cortex M3 (AtmelSAM3X8E )

• Arduino Due
• 32-bit, ARMv7-M
• 512 KiB Flash, 96 KB RAM, 84 MHz
• Variable time 32-bit multiplications !

6



UMULL on M3

1Based on the Master thesis of [dG15].

7



Constant time multiplications
on Cortex-M3



Overcoming the non-constant time multiplications

I Variable time 32-bit multiplications

• But, 16-bit multipliers are constant time
MUL, MLS – 1 cycle; MLA – 2 cycles

I Our solution: use 16-bit multipliers
⇒ represent the 32-bit values in radix 216

• Let a = 216a1 + a0 and b = 216b1 + b0
with 0 ≤ a0, b0 < 216 and −215 ≤ a1, b1 < 215

• Then ab = 232a1b1 + 216(a0b1 + a1b0) + a0b0,
with −231 ≤ aibj < 231

8



Overcoming the non-constant time multiplications

I Variable time 32-bit multiplications

• But, 16-bit multipliers are constant time
MUL, MLS – 1 cycle; MLA – 2 cycles

I Our solution: use 16-bit multipliers
⇒ represent the 32-bit values in radix 216

• Let a = 216a1 + a0 and b = 216b1 + b0
with 0 ≤ a0, b0 < 216 and −215 ≤ a1, b1 < 215

• Then ab = 232a1b1 + 216(a0b1 + a1b0) + a0b0,
with −231 ≤ aibj < 231

8



Overcoming the non-constant time multiplications

I Variable time 32-bit multiplications

• But, 16-bit multipliers are constant time
MUL, MLS – 1 cycle; MLA – 2 cycles

I Our solution: use 16-bit multipliers
⇒ represent the 32-bit values in radix 216

• Let a = 216a1 + a0 and b = 216b1 + b0
with 0 ≤ a0, b0 < 216 and −215 ≤ a1, b1 < 215

• Then ab = 232a1b1 + 216(a0b1 + a1b0) + a0b0,
with −231 ≤ aibj < 231

8



Overcoming the non-constant time multiplications

I Variable time 32-bit multiplications

• But, 16-bit multipliers are constant time
MUL, MLS – 1 cycle; MLA – 2 cycles

I Our solution: use 16-bit multipliers
⇒ represent the 32-bit values in radix 216

• Let a = 216a1 + a0 and b = 216b1 + b0
with 0 ≤ a0, b0 < 216 and −215 ≤ a1, b1 < 215

• Then ab = 232a1b1 + 216(a0b1 + a1b0) + a0b0,
with −231 ≤ aibj < 231

8



Overcoming the non-constant time multiplications

I Variable time 32-bit multiplications

• But, 16-bit multipliers are constant time
MUL, MLS – 1 cycle; MLA – 2 cycles

I Our solution: use 16-bit multipliers
⇒ represent the 32-bit values in radix 216

• Let a = 216a1 + a0 and b = 216b1 + b0
with 0 ≤ a0, b0 < 216 and −215 ≤ a1, b1 < 215

• Then ab = 232a1b1 + 216(a0b1 + a1b0) + a0b0,
with −231 ≤ aibj < 231

8



Schoolbook multiplication

9



(slides handover)

9



Optimizing performance



Optimizing performance

(1) Applying the CRT

(2) {Unsigned => Signed} representation

(3) Merging layer

10



Applying the CRT1

1Based on [BCLv19].

11



Applying the CRT1

1Based on [BCLv19].

11



Applying the CRT1

1Based on [BCLv19].

11



Applying the CRT1

1Based on [BCLv19].

11



Applying the CRT1

1Based on [BCLv19].

11



Applying the CRT

I NTT has to work in Zqi/(X
256 + 1)

⇒ choose qi NTT primes

I
∏

i qi must be larger than coefficients in c!

I For Dilithium, need to split into 4 polynomials mod qi

I Unfortunately, this is slower than doing schoolbook

I But it might be useful for other platforms :)

12



Applying the CRT

I NTT has to work in Zqi/(X
256 + 1)

⇒ choose qi NTT primes

I
∏

i qi must be larger than coefficients in c!

I For Dilithium, need to split into 4 polynomials mod qi

I Unfortunately, this is slower than doing schoolbook

I But it might be useful for other platforms :)

12



Applying the CRT

I NTT has to work in Zqi/(X
256 + 1)

⇒ choose qi NTT primes

I
∏

i qi must be larger than coefficients in c!

I For Dilithium, need to split into 4 polynomials mod qi

I Unfortunately, this is slower than doing schoolbook

I But it might be useful for other platforms :)

12



Applying the CRT

I NTT has to work in Zqi/(X
256 + 1)

⇒ choose qi NTT primes

I
∏

i qi must be larger than coefficients in c!

I For Dilithium, need to split into 4 polynomials mod qi

I Unfortunately, this is slower than doing schoolbook

I But it might be useful for other platforms :)

12



{Unsigned => Signed} representation

I Unsigned subtraction a− b overflows if a < b

I All subtractions are a− b ≡ (a+ Nq)− b to mitigate this

• Extra addition
• Numbers grow faster ⇒ more reductions needed

I Signed representation is better! :)

• No extra addition
• Numbers grow less ⇒ less reductions

13



{Unsigned => Signed} representation

I Unsigned subtraction a− b overflows if a < b

I All subtractions are a− b ≡ (a+ Nq)− b to mitigate this

• Extra addition
• Numbers grow faster ⇒ more reductions needed

I Signed representation is better! :)

• No extra addition
• Numbers grow less ⇒ less reductions

13



{Unsigned => Signed} representation

I Unsigned subtraction a− b overflows if a < b

I All subtractions are a− b ≡ (a+ Nq)− b to mitigate this

• Extra addition
• Numbers grow faster ⇒ more reductions needed

I Signed representation is better! :)

• No extra addition
• Numbers grow less ⇒ less reductions

13



{Unsigned => Signed} representation

I Unsigned subtraction a− b overflows if a < b

I All subtractions are a− b ≡ (a+ Nq)− b to mitigate this

• Extra addition
• Numbers grow faster ⇒ more reductions needed

I Signed representation is better! :)

• No extra addition
• Numbers grow less ⇒ less reductions

13



{Unsigned => Signed} representation

I Unsigned subtraction a− b overflows if a < b

I All subtractions are a− b ≡ (a+ Nq)− b to mitigate this

• Extra addition
• Numbers grow faster ⇒ more reductions needed

I Signed representation is better! :)

• No extra addition
• Numbers grow less ⇒ less reductions

13



Merging layers

I NTT (= FFT) recurses a binary tree

I Depth first: Many reloads of twiddle factors

I Breadth first: Many loads/spills of coefficients

I Go for hybrid approach, i.e., merging layers

14



Merging layers

I NTT (= FFT) recurses a binary tree

I Depth first: Many reloads of twiddle factors

I Breadth first: Many loads/spills of coefficients

I Go for hybrid approach, i.e., merging layers

14



Merging layers

I NTT (= FFT) recurses a binary tree

I Depth first: Many reloads of twiddle factors

I Breadth first: Many loads/spills of coefficients

I Go for hybrid approach, i.e., merging layers

14



Merging layers (visualisation)

15



Merging layers (visualisation)

15



Merging layers (visualisation)

15



Merging layers (visualisation)

15



Merging layers (impl)

I M4: Merge 2 layers

I M3 (constant-time): No merged layers

I M3 (leaktime): Merge 2 layers

16



Optimization memory



Three strategies

(1) Storing A in flash (realistic setting)

• Can read A from flash during signing
• Needs extra flash space

(2) Storing A in SRAM (“vanilla” setting)

• Generate A once during signing
• Needs extra SRAM space

(3) Streaming A and y (how small can we go?)

• No extra space needed
• Likely to be very slow

17



Three strategies

(1) Storing A in flash (realistic setting)

• Can read A from flash during signing
• Needs extra flash space

(2) Storing A in SRAM (“vanilla” setting)

• Generate A once during signing
• Needs extra SRAM space

(3) Streaming A and y (how small can we go?)

• No extra space needed
• Likely to be very slow

17



Three strategies

(1) Storing A in flash (realistic setting)

• Can read A from flash during signing
• Needs extra flash space

(2) Storing A in SRAM (“vanilla” setting)

• Generate A once during signing
• Needs extra SRAM space

(3) Streaming A and y (how small can we go?)

• No extra space needed
• Likely to be very slow

17



Three strategies

(1) Storing A in flash (realistic setting)

• Can read A from flash during signing
• Needs extra flash space

(2) Storing A in SRAM (“vanilla” setting)

• Generate A once during signing
• Needs extra SRAM space

(3) Streaming A and y (how small can we go?)

• No extra space needed
• Likely to be very slow

17



Stack optimization

18



Results



How we measured

Measuring performance

I M4: Use systick timer

I M3: Use the DWT cycle counter (CYCCNT)

Measuring stack usage

(1) Fill the stack with sentinel values

(2) Run the algorithm

(3) Count how many sentinel bytes were overwritten

19



How we measured

Measuring performance

I M4: Use systick timer

I M3: Use the DWT cycle counter (CYCCNT)

Measuring stack usage

(1) Fill the stack with sentinel values

(2) Run the algorithm

(3) Count how many sentinel bytes were overwritten

19



Results: NTT performance

NTT NTT−1 ◦

Dilithium

[GKOS18] constant-time M4 10 701 11 662 −
This work constant-time M4 8 540 8 923 1 955
This work variable-time M3 19 347 21 006 4 899
This work constant-time M3 33 025 36 609 8 479

I On Cortex M4 we have a 25% improvement

I (Leaktime) operations on M3 are 2.3× – 2.5× slower

I Constant-time NTT 1.7× slower than leaktime

20



Results: NTT performance

NTT NTT−1 ◦

Dilithium

[GKOS18] constant-time M4 10 701 11 662 −
This work constant-time M4 8 540 8 923 1 955
This work variable-time M3 19 347 21 006 4 899
This work constant-time M3 33 025 36 609 8 479

I On Cortex M4 we have a 25% improvement

I (Leaktime) operations on M3 are 2.3× – 2.5× slower

I Constant-time NTT 1.7× slower than leaktime

20



Results M4 strategy 1

Algorithm/
strategy Params Work Speed [kcc] Stack [B]

KeyGen (1)
Dilithium2 This work 2 267 7 916
Dilithium3 This work 3 545 8 940
Dilithium4 This work 5 086 9 964

Sign (1)

Dilithium2 [RGCB19, scen. 2] 3 640 –
Dilithium2 This work 3 097 14 428
Dilithium3 [RGCB19, scen. 2] 5 495 –
Dilithium3 This work 4 578 17 628
Dilithium4 [RGCB19, scen. 2] 4 733 –
Dilithium4 This work 3 768 20 828

Verify

Dilithium2 This work 1 259 9 004
Dilithium3 [GKOS18] 2 342 54 800
Dilithium3 This work 1 917 10 028
Dilithium4 This work 2 720 11 052

21



Results M4 strategy 2
Algorithm/
strategy Params Work Speed [kcc] Stack [B]

KeyGen (2 & 3)

Dilithium2 This work 1 315 7 916
Dilithium3 [GKOS18] 2 320 50 488
Dilithium3 This work 2 013 8 940
Dilithium4 This work 2 837 9 964

Sign (2)

Dilithium2 [RGCB19, scen. 1] 4 632 –
Dilithium2 This work 3 987 38 300
Dilithium3 [GKOS18] 8 348 86 568
Dilithium3 [RGCB19, scen. 1] 7 085 –
Dilithium3 This work 6 053 52 756
Dilithium4 [RGCB19, scen. 1] 7 061 –
Dilithium4 This work 6 001 69 276

Verify

Dilithium2 This work 1 259 9 004
Dilithium3 [GKOS18] 2 342 54 800
Dilithium3 This work 1 917 10 028
Dilithium4 This work 2 720 11 052 22



Results M4 strategy 3

Algorithm/
strategy Params Work Speed [kcc] Stack [B]

KeyGen (2 & 3)

Dilithium2 This work 1 315 7 916
Dilithium3 [GKOS18] 2 320 50 488
Dilithium3 This work 2 013 8 940
Dilithium4 This work 2 837 9 964

Sign (3)
Dilithium2 This work 13 332 8 924
Dilithium3 This work 23 550 9 948
Dilithium4 This work 22 658 10 972

Verify

Dilithium2 This work 1 259 9 004
Dilithium3 [GKOS18] 2 342 54 800
Dilithium3 This work 1 917 10 028
Dilithium4 This work 2 720 11 052

23



Results M3 strategy 1

Algorithm/
strategy Params Speed [kcc] Stack [B]

KeyGen (1)
Dilithium2 2 945 12 631
Dilithium3 4 503 15 703
Dilithium4 6 380 18 783

Sign (1)
Dilithium2 5 822 14 869a

Dilithium3 8 730 18 083b

Dilithium4 7 398 18 083c

Verify
Dilithium2 1 541 8 944
Dilithium3 2 321 9 967
Dilithium4 3 260 10 999

a Uses additional 23 632 bytes of flash space.
b Uses additional 34 896 bytes of flash space.
c Uses additional 48 208 bytes of flash space.

24



Results M3 strategy 2

Algorithm/
strategy Params Speed [kcc] Stack [B]

KeyGen (2 & 3)
Dilithium2 1 699 7 983
Dilithium3 2 562 9 007
Dilithium4 3 587 10 031

Sign (2)
Dilithium2 7 115 39 503
Dilithium3 10 667 53 959
Dilithium4 10 031 70 463

Verify
Dilithium2 1 541 8 944
Dilithium3 2 321 9 967
Dilithium4 3 260 10 999

25



Results M3 strategy 3

Algorithm/
strategy Params Speed [kcc] Stack [B]

KeyGen (2 & 3)
Dilithium2 1 699 7 983
Dilithium3 2 562 9 007
Dilithium4 3 587 10 031

Sign (3)
Dilithium2 18 932 9 463
Dilithium3 33 229 10 495
Dilithium4 31 180 11 511

Verify
Dilithium2 1 541 8 944
Dilithium3 2 321 9 967
Dilithium4 3 260 10 999

26



Performance results

Cortex M4

I New speed records! \o/

I 13%, 27%, and 18% speedup compared to [GKOS18]

I 14% – 20% speedup compared to [RGCB19]

Cortex M3

I New speed records1

I Signing: always need 40, 54, 70 kB of memory

I Signing: 24, 35, 48 kB can be flash instead of SRAM

I Keygen and Verify are always pretty cheap
1We are the first implementation on M3 ;)

27



Performance results

Cortex M4

I New speed records! \o/

I 13%, 27%, and 18% speedup compared to [GKOS18]

I 14% – 20% speedup compared to [RGCB19]

Cortex M3

I New speed records1

I Signing: always need 40, 54, 70 kB of memory

I Signing: 24, 35, 48 kB can be flash instead of SRAM

I Keygen and Verify are always pretty cheap
1We are the first implementation on M3 ;)

27



Performance results

Cortex M4

I New speed records! \o/

I 13%, 27%, and 18% speedup compared to [GKOS18]

I 14% – 20% speedup compared to [RGCB19]

Cortex M3

I New speed records1

I Signing: always need 40, 54, 70 kB of memory

I Signing: 24, 35, 48 kB can be flash instead of SRAM

I Keygen and Verify are always pretty cheap

1We are the first implementation on M3 ;)

27



Performance results

Cortex M4

I New speed records! \o/

I 13%, 27%, and 18% speedup compared to [GKOS18]

I 14% – 20% speedup compared to [RGCB19]

Cortex M3

I New speed records1

I Signing: always need 40, 54, 70 kB of memory

I Signing: 24, 35, 48 kB can be flash instead of SRAM

I Keygen and Verify are always pretty cheap
1We are the first implementation on M3 ;)

27



Memory results

Cortex M4

I Keygen and Verify are always pretty cheap

I Generally need 40, 54, 70 kB of memory

I Strategy 1: 24, 35, 48 kB can be flash instead of SRAM

I Also can get signing to around 10 kB

I For a factor 3× – 4×, we save 39, 43, 58 kB

28



Memory results

Cortex M4

I Keygen and Verify are always pretty cheap

I Generally need 40, 54, 70 kB of memory

I Strategy 1: 24, 35, 48 kB can be flash instead of SRAM

I Also can get signing to around 10 kB

I For a factor 3× – 4×, we save 39, 43, 58 kB

28



Memory results

Cortex M4

I Keygen and Verify are always pretty cheap

I Generally need 40, 54, 70 kB of memory

I Strategy 1: 24, 35, 48 kB can be flash instead of SRAM

I Also can get signing to around 10 kB

I For a factor 3× – 4×, we save 39, 43, 58 kB

28



Conclusion



Links

Paper: https://dsprenkels.com/files/dilithium-m3.pdf

Code: https://github.com/dilithium-cortexm/dilithium-cortexm

Authors:

I Daan: https://dsprenkels.com

I Denisa: TBD

I Matthias: https://kannwischer.eu

29

https://dsprenkels.com/files/dilithium-m3.pdf
https://github.com/dilithium-cortexm/dilithium-cortexm
https://dsprenkels.com
https://kannwischer.eu


29



Backup slides



References i

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van
Vredendaal.
NTRU Prime.
Submission to the NIST Post-Quantum Cryptography Standardization Project [NIS16],
2019.
available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

Wouter de Groot.
A performance study of X25519 on Cortex-M3 and M4, 2015.
https://pure.tue.nl/ws/portalfiles/portal/47038543.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://pure.tue.nl/ws/portalfiles/portal/47038543


References ii

Tim Güneysu, Markus Krausz, Tobias Oder, and Julian Speith.
Evaluation of lattice-based signature schemes in embedded systems.
In ICECS 2018, pages 385–388, 2018.
https://www.seceng.ruhr-uni-bochum.de/media/seceng/veroeffentlichungen/2018/10/
17/paper.pdf.

Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor
Seiler, and Damien Stehlé.
CRYSTALS-DILITHIUM.
Submission to the NIST Post-Quantum Cryptography Standardization Project [NIS16],
2019.
available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

https://www.seceng.ruhr-uni-bochum.de/media/seceng/veroeffentlichungen/2018/10/17/paper.pdf
https://www.seceng.ruhr-uni-bochum.de/media/seceng/veroeffentlichungen/2018/10/17/paper.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions


References iii

NIST Computer Security Division.
Post-Quantum Cryptography Standardization, 2016.
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.

Prasanna Ravi, Sourav Sen Gupta, Anupam Chattopadhyay, and Shivam Bhasin.
Improving Speed of Dilithium’s Signing Procedure.
In CARDIS 2019, volume 11833 of LNCS, pages 57–73. Springer, 2019.
https://eprint.iacr.org/2019/420.pdf.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://eprint.iacr.org/2019/420.pdf

	Introduction
	Constant time multiplications on Cortex-M3
	Optimizing performance
	Optimization memory
	Results
	Conclusion
	Appendix

