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Introduction



NIST Post-Quantum Standardization Competition

I 2016 – NIST calls for proposals for PQC algorithms

• Key Encapsulation Mechanisms (KEMs) and Digital Signatures

I 2017 – 69 candidates qualified for round 1

I 2019 – 26 candidates qualified for round 2

I July 2020 – round 3 candidates announced

• 7 finalists

I KEMs (Classic McEliece, Kyber, NTRU and Saber)
I Signatures (Dilithium, Falcon, and Rainbow)

• 8 alternative schemes

I KEMs (BIKE, FrodoKEM, HQC, NTRU Prime, SIKE )
I Signatures (GeMSS, Picnic, SPHINCS+)
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Dilithium

I Signature scheme

I Part of CRYSTALS (with Kyber)

I One of the 3rd round finalists

I Fiat-Shamir with aborts

I Module-LWE and Module-SIS

I Small keys and signatures

I Operates in the polynomial ring Rq = Zq[X ]/(X 256 + 1), with q = 8380417
⇒ Allows efficient polynomial multiplication with NTT

I 4 security levels (3 of them target NIST security levels 1-3)
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The Number-Theoretic Transform (NTT)

I Fast Fourier Transform (FFT) in finite field

I Let g = g0 + g1X + ...+ gn−1X
n−1, polynomial in Rq

I Representation of polynomial g :

• By its coefficients: g0, g1...gn−1

• By evaluating g at the powers of the n’th primitive root of unity:
g(ω0), g(ω1)...g(ωn−1)

I Formal definition of the NTT in Dilithium

• ĝ = NTT (g) =
∑n−1

i=0 ĝiX
i , with ĝi =

∑n−1
j=0 ψ

jgjω
ij ; and

• g = INTT (ĝ) =
∑n−1

i=0 giX
i , with gi = n−1ψ−i

∑n−1
j=0 ĝjω

−ij .

I Polynomial Multiplication in Rq

a · b = INTT(NTT(a) ◦ NTT(b))
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∑n−1
j=0 ψ

jgjω
ij ; and

• g = INTT (ĝ) =
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Dilithium simplified
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Target platforms

I Arm Cortex M4(STM32F407-DISCOVERY)

• NIST choice for PQC
• 32-bit, ARMv7e-M
• 1 MiB ROM, 196 KB RAM, 168 MHz
• 32-bit multiplications in 1 cycle

(UMULL, SMULL, UMLAL, SMLAL)

I Arm Cortex M3 (AtmelSAM3X8E )

• Arduino Due
• 32-bit, ARMv7-M
• 512 KiB Flash, 96 KB RAM, 84 MHz
• Variable time 32-bit multiplications !
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UMULL on M3

1Based on the Master thesis of [dG15].
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Constant time multiplications
on Cortex-M3



Overcoming the non-constant time multiplications

I Variable time 32-bit multiplications

• But, 16-bit multipliers are constant time
MUL, MLS – 1 cycle; MLA – 2 cycles

I Our solution: use 16-bit multipliers
⇒ represent the 32-bit values in radix 216

• Let a = 216a1 + a0 and b = 216b1 + b0
with 0 ≤ a0, b0 < 216 and −215 ≤ a1, b1 < 215

• Then ab = 232a1b1 + 216(a0b1 + a1b0) + a0b0,
with −231 ≤ aibj < 231
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Schoolbook multiplication
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(slides handover)
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Optimizing performance



Optimizing performance

(1) Applying the CRT

(2) {Unsigned => Signed} representation

(3) Merging layer

10



Applying the CRT1

1Based on [BCLv19].
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Applying the CRT

I NTT has to work in Zqi/(X
256 + 1)

⇒ choose qi NTT primes

I
∏

i qi must be larger than coefficients in c!

I For Dilithium, need to split into 4 polynomials mod qi

I Unfortunately, this is slower than doing schoolbook

I But it might be useful for other platforms :)
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{Unsigned => Signed} representation

I Unsigned subtraction a− b overflows if a < b

I All subtractions are a− b ≡ (a+ Nq)− b to mitigate this

• Extra addition
• Numbers grow faster ⇒ more reductions needed

I Signed representation is better! :)

• No extra addition
• Numbers grow less ⇒ less reductions
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Merging layers

I NTT (= FFT) recurses a binary tree

I Depth first: Many reloads of twiddle factors

I Breadth first: Many loads/spills of coefficients

I Go for hybrid approach, i.e., merging layers
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Merging layers (visualisation)
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Merging layers (visualisation)
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Merging layers (impl)

I M4: Merge 2 layers

I M3 (constant-time): No merged layers

I M3 (leaktime): Merge 2 layers

16



Optimization memory



Three strategies

(1) Storing A in flash (realistic setting)

• Can read A from flash during signing
• Needs extra flash space

(2) Storing A in SRAM (“vanilla” setting)

• Generate A once during signing
• Needs extra SRAM space

(3) Streaming A and y (how small can we go?)

• No extra space needed
• Likely to be very slow
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Stack optimization
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Results



How we measured

Measuring performance

I M4: Use systick timer

I M3: Use the DWT cycle counter (CYCCNT)

Measuring stack usage

(1) Fill the stack with sentinel values

(2) Run the algorithm

(3) Count how many sentinel bytes were overwritten
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Results: NTT performance

NTT NTT−1 ◦

Dilithium

[GKOS18] constant-time M4 10 701 11 662 −
This work constant-time M4 8 540 8 923 1 955
This work variable-time M3 19 347 21 006 4 899
This work constant-time M3 33 025 36 609 8 479

I On Cortex M4 we have a 25% improvement

I (Leaktime) operations on M3 are 2.3× – 2.5× slower

I Constant-time NTT 1.7× slower than leaktime
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Results M4 strategy 1

Algorithm/
strategy Params Work Speed [kcc] Stack [B]

KeyGen (1)
Dilithium2 This work 2 267 7 916
Dilithium3 This work 3 545 8 940
Dilithium4 This work 5 086 9 964

Sign (1)

Dilithium2 [RGCB19, scen. 2] 3 640 –
Dilithium2 This work 3 097 14 428
Dilithium3 [RGCB19, scen. 2] 5 495 –
Dilithium3 This work 4 578 17 628
Dilithium4 [RGCB19, scen. 2] 4 733 –
Dilithium4 This work 3 768 20 828

Verify

Dilithium2 This work 1 259 9 004
Dilithium3 [GKOS18] 2 342 54 800
Dilithium3 This work 1 917 10 028
Dilithium4 This work 2 720 11 052

21



Results M4 strategy 2
Algorithm/
strategy Params Work Speed [kcc] Stack [B]

KeyGen (2 & 3)

Dilithium2 This work 1 315 7 916
Dilithium3 [GKOS18] 2 320 50 488
Dilithium3 This work 2 013 8 940
Dilithium4 This work 2 837 9 964

Sign (2)

Dilithium2 [RGCB19, scen. 1] 4 632 –
Dilithium2 This work 3 987 38 300
Dilithium3 [GKOS18] 8 348 86 568
Dilithium3 [RGCB19, scen. 1] 7 085 –
Dilithium3 This work 6 053 52 756
Dilithium4 [RGCB19, scen. 1] 7 061 –
Dilithium4 This work 6 001 69 276

Verify

Dilithium2 This work 1 259 9 004
Dilithium3 [GKOS18] 2 342 54 800
Dilithium3 This work 1 917 10 028
Dilithium4 This work 2 720 11 052 22



Results M4 strategy 3

Algorithm/
strategy Params Work Speed [kcc] Stack [B]

KeyGen (2 & 3)

Dilithium2 This work 1 315 7 916
Dilithium3 [GKOS18] 2 320 50 488
Dilithium3 This work 2 013 8 940
Dilithium4 This work 2 837 9 964

Sign (3)
Dilithium2 This work 13 332 8 924
Dilithium3 This work 23 550 9 948
Dilithium4 This work 22 658 10 972

Verify

Dilithium2 This work 1 259 9 004
Dilithium3 [GKOS18] 2 342 54 800
Dilithium3 This work 1 917 10 028
Dilithium4 This work 2 720 11 052
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Results M3 strategy 1

Algorithm/
strategy Params Speed [kcc] Stack [B]

KeyGen (1)
Dilithium2 2 945 12 631
Dilithium3 4 503 15 703
Dilithium4 6 380 18 783

Sign (1)
Dilithium2 5 822 14 869a

Dilithium3 8 730 18 083b

Dilithium4 7 398 18 083c

Verify
Dilithium2 1 541 8 944
Dilithium3 2 321 9 967
Dilithium4 3 260 10 999

a Uses additional 23 632 bytes of flash space.
b Uses additional 34 896 bytes of flash space.
c Uses additional 48 208 bytes of flash space.
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Results M3 strategy 2

Algorithm/
strategy Params Speed [kcc] Stack [B]

KeyGen (2 & 3)
Dilithium2 1 699 7 983
Dilithium3 2 562 9 007
Dilithium4 3 587 10 031

Sign (2)
Dilithium2 7 115 39 503
Dilithium3 10 667 53 959
Dilithium4 10 031 70 463

Verify
Dilithium2 1 541 8 944
Dilithium3 2 321 9 967
Dilithium4 3 260 10 999
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Results M3 strategy 3

Algorithm/
strategy Params Speed [kcc] Stack [B]

KeyGen (2 & 3)
Dilithium2 1 699 7 983
Dilithium3 2 562 9 007
Dilithium4 3 587 10 031

Sign (3)
Dilithium2 18 932 9 463
Dilithium3 33 229 10 495
Dilithium4 31 180 11 511

Verify
Dilithium2 1 541 8 944
Dilithium3 2 321 9 967
Dilithium4 3 260 10 999
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Performance results

Cortex M4

I New speed records! \o/

I 13%, 27%, and 18% speedup compared to [GKOS18]

I 14% – 20% speedup compared to [RGCB19]

Cortex M3

I New speed records1

I Signing: always need 40, 54, 70 kB of memory

I Signing: 24, 35, 48 kB can be flash instead of SRAM

I Keygen and Verify are always pretty cheap
1We are the first implementation on M3 ;)
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Memory results
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I Keygen and Verify are always pretty cheap
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Links

Paper: https://dsprenkels.com/files/dilithium-m3.pdf

Code: https://github.com/dilithium-cortexm/dilithium-cortexm

Authors:

I Daan: https://dsprenkels.com

I Denisa: TBD

I Matthias: https://kannwischer.eu
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