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Abstract

The nontrivial cofactor in Curve25519 has introduced design risks in complex
cryptographic protocols. While the Decaf and Ristretto point-compression
schemes can be used to mitigate these risks, they can also be prevented by
using traditional prime-order curves.
Arithmetic on these prime-order curves can safely be implemented using
the complete addition formulas from Renes, Costello, and Batina. While
Curve25519 is often presumed to be considerably faster than traditional
Weierstrass curves, this has never been quantified accurately. In this thesis,
we aim to evaluate the actual performance benefit that Curve25519 provides
over traditional Weierstrass curves.
We select a prime order curve that is similar to Curve25519. Using the
Renes-Costello-Batina addition formulas, we implement an algorithm for
variable-base-point scalar multiplication. The implementation targets Intel’s
Sandy Bridge microarchitecture, and leverages the 4× vectorized double-
precision floating-point arithmetic that AVX provides.
When we compare the performance of our implementation to the perfor-
mance of the Sandy2x implementation, we observe that Sandy2x is a fac-
tor 2.5 faster than our implementation. Moreover, we see that the “cost
of completeness”—i.e. the general overhead of the Renes-Costello-Batina
formulas—is about a factor of 1.4.
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Chapter 1

Introduction

Elliptic curve cryptography (ECC) is the most used building block in mod-
ern public-key cryptography. ECC was independently introduced by [49]
in 1986 and [41] in 1987. Elliptic curves provide a faster alternative to tradi-
tional integer-group based crypto primitives. In July 1999, the U.S. National
Institute of Standards and Technology (NIST) published their recommenda-
tions, to be included in FIPS 186-2 [51], which stipulated the use of elliptic
curves in cryptography. Included in the standard were the parameters for
5 prime-order elliptic curves, varying in security level. In the present day,
these curves are still used extensively by many prominent protocols, most
notably TLS.

1.1 Cofactors and completeness

Back at the turn of the century, when elliptic-curve cryptography was popu-
larized, there existed no complete addition laws for Weierstrass curves that
were deemed efficient enough to be implemented. During that time, only
the work from Bosma and Lenstra [15] had been published.
As a result, implementors chose to use incomplete addition laws in their
software. These implementations dealt with exceptions using branching.
Over time, side-channel attacks on these algorithms were deemed relevant,
while more publications were published about the insecurity of these algo-
rithms [28].
In response, Bernstein invented Curve25519 [8]: a Montgomery curve that
came with complete addition formulas. When used with the Montgomery
ladder [50], these formulas allowed for scalar-multiplication algorithms that
were faster than any algorithms for other Weierstrass curves of the time.
Furthermore, these addition formulas—and the Montgomery ladder—have
been presumed to be easier to implement in a side-channel resistant manner.
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Although Curve25519’s formulas are easier to implement, is has been seen
that they still allow for insecure implementations, as has been demonstrated
by [40] and [29].
More recently, the IETF’s Crypto Forum Research Group (CFRG) initialized
new efforts to standardize more modern elliptic curves. Older standardized
curves, like the ones from NIST [51] and Certicom [19], only considered
Weierstrass curves. Modern curve designs, like Montgomery curves and
(twisted) Edwards curves [9] were never considered for inclusion. After
quite some debate and a year of drafting, the CFRG accepted RFC7748 [43],
which recommends the use of Curve25519 and Curve448 [32], a similar
curve proposed by Hamburg in 2015.
A downside to Curve25519 is its nontrivial cofactor. This is not a problem
for simple protocols, like Diffie-Hellman [24] and the Schnorr signature
scheme [59], as implemented by [9]. However, for more involved proto-
cols, a cofactor h = 1 is often preferable when an algorithm’s simplicity is
favored.
This flaw has led to a major vulnerability in the Monero cryptocurrency [53].
In 2017, it was found that the cryptocurrency was vulnerable to a small-
subgroup attack, which allowed the attacker to double-spend. This attack
could have been prevented by properly hashing the inputs, or checking
that the input points are not in a small subgroup.1 However, this class of
attacks would have been completely invalid if a prime-order group had been
used.
Regardless, the nontrivial-cofactor flaw was fixed in 2015 when Hamburg
published Decaf [31]. Decaf, and its extension Ristretto, are point-compress-
ion schemes that are used to construct a prime-order group over Edwards,
Twisted Edwards, and Montgomery curves. Ristretto allows us to assume
a prime-order group when constructing cryptographic protocols. In other
words, we do not have to fall back to more traditional (Weierstrass) curves;
we can just implement the relatively simple group arithmetic of Curve25519
and encode group elements using Ristretto.

1While it may be tempting to dismiss the lack of input validation as a “rookie mistake”, it
has been highly debated whether to validate input points on Curve25519 at all. This debate
has been held mainly in the context of the Curve25519-based key-exchange protocol X25519.
While the validation of points is ineffective in X25519, it can be important in other protocols
based on Curve25519 to prevent small-subgroup attacks. Extra confusion is caused, because
the term “Curve25519” has often been used to refer to the “X25519” key exchange, instead of
just the curve.
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1.2 Complete formulas for Weierstrass curves

Nevertheless, we would like to take a step back and look at the alternative
method of using more traditional prime-order curves. That is, the main
benefit of using Curve25519 in the first place, is that its complete formulas
are faster than any complete formulas for Weierstrass curves.2 However
in 2017, Renes, Costello, and Batina published a set of complete addition
formulas for Weierstrass curves [57]. At the moment of writing, these for-
mulas are still the fastest complete formulas for general Weierstrass curves
in existence. They have been implemented in OpenSSL, and an optimized
implementation has been constructed in hardware [46]. Still, no optimized
software implementations of these formulas have as of yet been built.
Therefore, we feel that this presumption—that complete implementations
for Weierstrass curves are considerably slower than implementations for
Curve25519—is unproven. Because of the complexity of the Renes-Costello-
Batina formulas, it is expected that they are indeed slower than the Curve-
25519 formulas; but we are interested in a more concrete measure of the
actual difference. This thesis aims to provide such a measure.
Although we think it always preferable to implement complete formulas
for Weierstrass curves in software, let us articulate that by no means we
recommend the use of the Renes-Costello-Batina formulas above the use
of Curve25519 with Ristretto for new protocols. This thesis aims only to
quantify the benefit of Curve25519 over Weierstrass curves in terms of per-
formance.

1.3 Our contribution

In this work, we implement a Weierstrass curve with parameters similar to
Curve25519’s in software. To be able to make an apt comparison, we select
what we consider a current state-of-the-art implementation for Curve25519:
Sandy2x [21]. This implementation targets the Sandy Bridge microarchi-
tecture, and hence our implementation will target the same microarchitec-
ture. We will implement an algorithm for variable-base-point scalar multipli-
cation, which is the most general building block for elliptic-curve computa-
tions.
In Chapter 2, we introduce some of the concepts thatwill be used in the rest of
the thesis. Skilled cryptographers should be able to skip this chapter entirely.
Before constructing the implementation, we will select a proper Weierstrass
curve in Chapter 3. This curve should be similar to Curve25519 in parameters,
but should be a traditional prime-order curve. After constructing the curve,

2For example, on one of their “SafeCurves” pages [11], Bernstein and Lange suggest that
no viable complete addition laws exist for Weierstrass curves.
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we will devise the finite-field arithmetic in Chapter 4. On Sandy Bridge, we
can use SIMD (single instruction, multiple data) instructions to vectorize
some of our computations. In particular, we will look at 2× vectorization
using 64-bit integers; and 4× vectorization using double precision floating
points. In Chapter 5, we will apply the finite-field arithmetic to implement
the Renes-Costello-Batina addition formulas for our curve. In Chapter 6,
we will put the pieces together in a signed-window scalar-multiplication
algorithm. Then, in Chapter 7, we will look at the resulting performance
of our algorithm. In the end, we hope to be able to state—as accurately as
possible—the actual benefit of Curve25519’s construction, compared to the
general Weierstrass format. I.e. we hope to find the added cost of the Renes-
Costello-Batina formulas, compared to the Curve25519 formulas.
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Chapter 2

Preliminaries

2.1 Elliptic curve cryptography

The field of cryptography can be divided into two main categories of al-
gorithms. Symmetric cryptography involves cryptographic algorithms with
only one key. This key is used for both the encryption and decryption of a
ciphertext. Similarly, the key can be used to generate and verify message
authentication codes on messages.
With asymmetric cryptography we are dealing with two keys: A public key
and a private key. Two different keys allow us to build much more advanced
cryptographic algorithms, including key exchange algorithms and digital sig-
nature algorithms. In the next section we will look at the Diffie-Hellman key
exchange as an example.

2.1.1 The discrete log problem

All crypto algorithms rely on some kind of computationally hard problem.
In asymmetric crypto, the currently most prominent problem is the discrete
logarithm problem (DLP). When considering a cyclic group G, the DLP states
that, given some group elements g and h where h = gx, it is hard to find
x. We can use the hardness of this problem to construct more high-level
asymmetric crypto primitives. These algorithms are built in such a way that
if the attacker breaks the algorithm, they must have found a solution for
the problem that was presumed to be hard to solve. In other words, if the
problem is indeed hard to solve, then the algorithm will be at least as hard
to break.
The computational Diffie-Hellman problem is similar to the discrete loga-
rithm problem [47]. It assumes that in some mathematical group ⟨g⟩, it is
computationally hard to find gx1x2 given gx1 and gx2 . This assumption is
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used to construct the Diffie-Hellman key-exchange [24]. The Diffie-Hellman
key exchange protocol is used to establish a shared secret between two par-
ticipants over an insecure channel.
In this protocol, the participants Alice and Bob (A and B) first generate
random private keys xA, xB ∈R Z∗

n. Alice and Bob then compute their public
shares hA = gxA and hB = gxB respectively. They exchange their public
shares and keep their private keys secret. Now Alice computes s = hxA

B

and Bob computes s = hxB
A . Both end up with the same secret s, because

s = (gxA)xB = (gxB )xA . By definition, the Diffie-Hellman problem states
that given hA and hB is i hard to find s, which makes the protocol secure
against any eavesdropping.
Traditionally, the group used for protocols like the Diffie-Hellman key ex-
change is the multiplicative group of integers modulo a prime, often denoted
by (Z∗

p, ·). Obviously the Diffie-Hellman problem is not hard to compute for
small values of p. One can simply iterate over all the possible values of x.
Indeed, the order of g must be large enough to obtain an algorithm that is
not trivial to break.
The main drawback of using this group is its subexponential security. In
otherwords, subexponential attacks, such as the index calculus algorithm [1],
break the discrete logarithm and Diffie-Hellman assumptions for these in-
teger groups. This is mitigated by increasing the group size. For a security
level of 128 bits—that is, withstanding attacks that need at least in the order
of 2128 operations—the recommended group size is 3072 bits [2].

2.1.2 Weierstrass curves

Another class of groups that are believed to uphold the DLP is the groups
of points on some elliptic curves. This was independently proposed by
Miller [49] and Koblitz [41]. The elliptic curves used in cryptography are
defined over finite fields. These can be described by a Weierstrass curve
equation:

y2 = x3 + ax+ b (2.1)

Added to the points described by the curve equation is the point at infinity,
symbolized by O. Intuitively, one can regard O as the point that lies every-
where where y = ±∞. We will use this point later when we define addition
on the curve.
One interesting property of elliptic curves is that a line drawn through any
two points on the curve intersects the curve in exactly one other point. We
can use this property to define the addition of two points on the curve.
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To describe the addition P +Q = R, where P = (xP , yP ) and Q = (xQ, yQ),
we first consider the case where xP ̸= xQ. Wewill take the line that intersects
the points P and Q and look for the third intersection of this line with
the curve; we call this point −R. We reflect −R around the x-axis to get
R = P+Q. An illustration of this geometric description is shown in Figure 2.1
on an elliptic curve over Q.

−4 −2 0 2 4

x

−4

−2

0

2

4

y

P

Q

−R

R

Point addition

Figure 2.1: Addition of P and Q on some elliptic curve over Q.

Of course this geometric description does not apply when P = Q. We cannot
draw a line between P and Q, instead we draw the line tangent to the curve
that goes through P . Then we take the other point that intersects the curve,
and its reflected point around the x-axis is R = 2P .
An other exception applies whenever the constructed line is vertical. This
happens when:

1. Two different points have the same x coordinate, or
2. A point is added to itself, where the tangent to the curve is vertical.

This is only the case for points where y = 0.
In these cases, we end up with a vertical line that does not intersect the
curve in any other regular point. We have previously introduced the point
at infinity O for this exception. Whenever this situation occurs, we define
the sum of the points to be O.
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2.1.3 Addition formulas

The geometric notion of point addition on elliptic curves can be put into
addition formulas. These formulas are used to compute R = P +Q. They can
be derived from the geometric description of addition. Recall that there are
four distinct cases that can occur:

1. xP ̸= xQ

2. xP = xQ and yP = yQ ̸= 0

3. xP = xQ and yP = −yQ
4. xP = xQ and yP = yQ = 0

Case 1. In the first case we are dealing with regular addition. To compute
R = (xR, yR), we first compute the slope λ:

λ =
xP − xQ
yP − yQ

(2.2)

Then the resulting coordinates of R = P +Q are:

xR = λ2 − xP − xQ and yR = λ(xP − xR)− xP (2.3)

Case 2. When P = Q we are doubling a point. Recall that the slope of
some equation is equal to dy

dx at the point (xP , yP ). Using the curve equation,
we can calculate λ in the doubling case:

λ =
dy

dx
=

d(x3 + ax+ b)

dx

dy

d(y2)
=

3x2 + b

2y

Filling in the coordinates from P yields the slope at the point:

λ =
3x2P + b

2yP
(2.4)

Otherwise the coordinates of R = 2P are computed as in equation 2.3.

Cases 3 and 4. In the third and fourth case we already saw that we are
dealing with a vertical slope. This slope intersects the curve at the point at
infinity. Whenever we hit one of these cases, we define the sum of P and Q
to be O.
Up until this point, we have refrained from choosing a mathematical struc-
ture for our coordinates to exist in. Figure 2.1 suggests using a Weierstrass
curve defined over the rational numbers. In cryptography, however, we
work with elliptic curves defined over finite fields. Therefore, elliptic curves
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actually look quite different from the intuitive depiction in Figure 2.1. They
are only defined for discrete values of x and y, so the amount of points on
the curve is limited. Still, the geometric description of the curve holds and
the addition formulas are unchanged.
For example, let us consider the elliptic curve E defined over F11 described
by the following curve equation:

E : y2 = x3 − 3x+ 1 (2.5)

Note that this is just a regular Weierstrass equation, with a = −3 and b = 1.
To add the points P = (0,−1) and Q = (4, 3), we apply the regular addition
routine: Draw a line through both points and find a third point on this line
(which is (8,−4) = −R). After reflecting around the x-axis, we find P +Q =
(8, 4) = R. An illustration of this example is shown in Figure 2.2.

0 1 2 3 4 5 6 7 8 9 10 11

x

−5

−4

−3

−2

−1

0

1

2

3

4

5

y

P

Q

−R

R

Point addition on E defined over F11

Figure 2.2: Addition of P + Q = (0,−1) + (4, 3) on E : y2 = x3 − 3x + 1
defined overF11, resulting inR = (8, 4). Note that becausewe areworking in
F11, we are computing everything modulo 11. Accordingly, the intersection
line wraps around in the figure.

2.1.4 Using curves for cryptography

The truly useful property of elliptic curves and their addition laws is that
the points on an elliptic curve form a cyclic group with the point addition
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operation. As such, we have a structure that looks a lot like the groups from
Subsection 2.1.1.
Where we have the DLP for integer groups, we have a new assumption for
elliptic curves: The elliptic curve discrete logarithm problem (ECDLP). The
ECDLP states that, given some points P andQ, whereQ = [k]P , it is hard to
find the scalar k. The ECDLP is not hard for all elliptic curves though. Only
a few elliptic curves actually satisfy the properties that make the ECDLP
hard. For a curve to be secure for cryptographic use, it has to meet several
criteria.
Most importantly, recall from Subsection 2.1.1 that we need a group with a
large order. Fortunately, choosing an elliptic curve with a large order is easy.
Hasse’s theorem [33] states that

|N − (q + 1)| ≤ 2
√
q,

which means the number of points on an elliptic curve N is of roughly the
same size as the size of the underlying finite fieldFq. Effectively, if we choose
a finite field Fq with q around 2256, every curve constructed over this field
will have around 2256 Fq-rational points.
However, the security of the curve is not exactly determined by the total
order of points on the curve, but by the order ℓ of the largest subgroup in
the elliptic curve. The Pohlig-Hellman algorithm can be used to reconstruct
the discrete logarithm in the large group from the discrete logarithms in the
subgroups [54]. This makes breaking the DLP for the whole group only as
hard as breaking the DLP for its largest subgroup.
Because of the Sylow theorems, if N is a smooth number (i.e. it has a lot of
prime factors), the curve has a lot of subgroups. Then, the complexity of the
attack (and thus the security of the curve) is greatly reduced. Therefore, N
is often chosen to be a prime number. The curves where N is a prime are
generally called prime order curves.
Still, in some classes of elliptic curves—like Montgomery curves and Ed-
wards curves—N cannot be prime. In these cases, N is chosen to be “almost
prime”. For example, in Curve25519 [8], N = h · ℓwhere ℓ is a large prime
number and h = 8. This additional factor h is called the cofactor. It is often
safe to have a cofactor h > 1, but when a cryptographic protocol is imple-
mented poorly, it can be vulnerable to small subgroup attacks. This attack is
explained further in Subsection 3.3.
What is left to choose is the size of the subgroup order ℓ. It has to be large
enough such that an attacker cannot find the solution to the ECDLP using
any algorithm. Recall that with the integer groups—because of the index
calculus algorithm—we need an order of around 3000 bits. However, index
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calculus can only be used to solve the integer DLP, not the elliptic-curve DLP.
At the moment of writing, the best general attack for solving the ECDLP is
Pollard’s ρ Algorithm [56]. It reduces the complexity of finding the discrete
logarithm of two elements in any group to O(

√
ℓ). So to get a security of k

bits, we need to choose ℓ ≥ 22k. In cryptography, an often desired security
level is 128 bits, so ℓ is chosen to be around 2256. For example: Curve25519’s
ℓ is around 2252, which provides a security level of around 126 bits against
Pollard’s ρ attack.
This difference in group size translates directly to the performance of im-
plementations of the algorithms described thusfar. In (EC)DLP-based algo-
rithms, public keys are always group elements. It is clear that transmitting
public keys of 3072 bits takes more than ten times longer than transmitting
keys of 256 bits. Moreover, computations with numbers of 3072 bits take a
lot longer than computations with only 256 bits. The consequence is that
elliptic-curve implementations generally need less RAM and can achieve
much better performance than their integer-based counterparts.

2.2 Scalar multiplication

In the previous section we have seen the addition laws forWeierstrass curves.
We have seen that elliptic-curve arithmetic can be used to construct crypto-
graphic protocols, like the Diffie-Hellman key exchange. The most important
computation that is executed in these protocols is the operation Q = [k]P ,
where k ∈R ZN . This operation, which multiplies a point P by a scalar k, is
called scalar multiplication. On curve points, only addition and subtraction
are actually defined, and there exists no trick to natively compute the scalar
multiplication of a point. So we will have to compute the scalar multipli-
cation by repeatedly adding the base point to itself. Such a computation is
called an addition chain.
The most naive method of computing the scalar multiplication would be to
initialize an accumulator variable to Q := O and then k times adding P to
Q. Essentially, it computes:

Q = O + P + . . .+ P︸ ︷︷ ︸
k times

(2.6)

Because k is a large number, this computation will take forever to compute.1
Fortunately, there are other addition chains that take less operations than
the naive method.

1Note that even the discrete logarithm problem can be solved more efficiently.
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2.2.1 Double-and-add

The traditional addition chain for computing the scalar multiplication of
a point on an elliptic curve is the double-and-add algorithm (Algorithm 2.1).
In this procedure, the key k is split into its bits k0, . . . , kn−1 such that k =
k02

0 + . . .+ kn−12
n−1 and every ki is in {0, 1}.

Algorithm 2.1 Double-and-add algorithm
1: function DoubleAndAdd(k, P ) ▷ Compute [k]P
2: R← O
3: for i from n− 1 down to 0 do
4: R← [2]R ▷ Doubling
5: if ki = 1 then
6: R← R+ P ▷ Addition
7: else
8: R← R+O ▷ Addition
9: end if
10: end for
11: return R
12: end function

Because of reasons that will be explained in Section 2.4.3, for the algorithm to
be secure, we cannot use any branches in our implementations that depend
on the value of k. This means that in a regular implementation, we cannot
skip the addition step if ki = 0. That is why, on line 8, we add the neutral
element, instead of doing nothing.
We can see that the cost of the double-and-add algorithm isn·double+n·add.
For 256-bit curves, this results in 256 doublings and 256 additions.

2.2.2 Generalized Montgomery ladder

An alternative to the double-and-add algorithm is the generalized Mont-
gomery ladder algorithm from [16], based on the original Montgomery ladder
from [50]. Just as the double-and-add algorithm presented in Section 2.2.1,
the generalizedMontgomery ladder scans k frommost significant bit to least
significant bit.
The generalized Montgomery ladder works by using two different accu-
mulators instead of one. R0 always contains the “lower bound” value and
R1 contains the “upper bound”. Where R is the actual result of the com-
putation, and m is the amount of bits left to scan, at every ladder step it
holds that

2mR0 ≤ R < 2mR1.
After n iterationsm is equal to 0, and thusR0 will be exactly equal toR.
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Algorithm 2.2 Generalized Montgomery ladder algorithm
1: function GeneralizedMontgomeryLadder(k, P ) ▷ Compute [k]P
2: R0 ← O
3: R1 ← P
4: for i from n− 1 down to 0 do
5: if ki = 1 then
6: R0 ← R0 +R1 ▷ Doubling
7: R1 ← [2]R1 ▷ Addition
8: else
9: R1 ← R0 +R1 ▷ Addition
10: R0 ← [2]R0 ▷ Doubling
11: end if
12: end for
13: return R0

14: end function

As an example, an illustration of the generalizedMontgomery ladder compu-
tation for k = 13 is shown in figure 2.3. Note that the binary representation
of k is 1101.
The cost of the generalized Montgomery ladder algorithm is equal to the
cost of the double-and-add algorithm: 256 doublings and 256 additions for
a k value of 256 bits. The main added benefit of the Montgomery ladder is
that it is very efficient for curves of which x-only addition laws exist.2

2.2.3 Fixed-window method

Further performance gains can be achieved by adapting the double-and-
add algorithm and looking at multiple bits of k in each loop iteration. This
method is called the fixed-window method. k is split in multiple “digits” of
size w, such that every element in k′ = Windowsw(k) is in {0, . . . , 2w − 1},
instead of just {0, 1}. For example, when we split the scalar k = 45678 into
windows of size w = 4, we get (k′3, k′2, k′1, k′0) = (11, 2, 6, 14). This is shown
in figure 2.4.
We precompute a table of all the multiples of P up to [2w − 1]P and store
them in a lookup table. We use the values from the table for the addition
in the double-and-add algorithm. The resulting fixed-window algorithm is
listed in Algorithm 2.3.

2The Montgomery ladder is also proclaimed to be “more side channel resistant” (see
Section 2.4) than the double-and-add algorithm. While this is true, side-channel resistance is
a property of implementations, not algorithms. Indeed, some programmers will have been
saved by the intrinsic side channel resistant structure of the Montgomery ladder. Still, it is a
subjective argument and not particularly relevant for this thesis.
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Figure 2.3: Generalized Montgomery ladder computation for k = 1310 =
11012.

k′3 k′2 k′1 k′0

1011 0010 0110 1110k =

Figure 2.4: Splitting k = 4567810 into widows of size w = 4.

In its loop, the fixed-window method computes only ⌈ nw⌉ additions, instead
of n. Although we have to additionally count the doublings and additions
needed for computing the lookup table, we still end upwith fewer operations.
When using the fixed-window method, the amount of operations depends
on the window size w:

#ops = (2w−1 − 1
)
(double+ add)︸ ︷︷ ︸

precomputation

+n · double+
⌈ n
w

⌉
add︸ ︷︷ ︸

loop

(2.7)

When we take n = 256, as we did in the previous section, we can choose
w = 4. Now (using Equation 2.7) we only need 262 doublings and 71
additions.
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Algorithm 2.3 Fixed-window double-and-add
1: function FixedWindow(k, P ) ▷ Compute [k]P
2: k′ ←Windowsw(k)
3: Precompute ([2]P, . . . , [2w − 1]P )
4: R← O
5: for i from n

w − 1 down to 0 do
6: for j from 0 to w − 1 do
7: R← [2]R ▷ w doublings
8: end for
9: if k′i ̸= 0 then
10: R← R+ [k′i]P ▷ Addition
11: else
12: R← R+O ▷ Addition
13: end if
14: end for
15: return R
16: end function

2.2.4 Signed digit recoding

The last scalar multiplication optimization that is relevant for this thesis is
to recode the window digits into a signed form. This method is called the
signed window method. In this optimization, we use the feature that inverting
a point on an elliptic curve is very cheap. To invert P , we only have to negate
its y coordinate.
After encoding the windows into k′ in the previous section, we will re-
code them into signed form. To compute k′′ = RecodeSigned(k′), we first
subtract w for every k′i ≥ 2w−1 and add 1 to the next digit for every subtrac-
tion. The example k′i digits from Section 2.2.3 (with k = 45678) recode to
(k′′4 , k

′′
3 , k

′′
2 , k

′′
1 , k

′′
0) = (1,−5, 2, 7,−2).

An illustration is shown in figure 2.5.

k′′4 k′′3 k′′2 k′′1 k′′0

1011 0010 0110 1110

1 −101 010 111 −010

k =

Figure 2.5: Splitting k = 4567810 into windows of size w = 4 and recoding
them into signed form. Carries from w-subtracted digits to the next are
highlighted in red.
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Algorithm 2.4 Signed double-and-add
1: function SignedFixedWindow(k, P ) ▷ Compute [k]P
2: k′ ← RecodeSigned(Windowsw(k))
3: Precompute ([2]P, . . . , [2w−1]P )
4: R← O
5: for i from n

w − 1 down to 0 do
6: for j from 0 to w − 1 do
7: R← [2]R ▷ w doublings
8: end for
9: if k′i > 0 then
10: R← R+ [k′i]P ▷ Addition
11: else if k′i < 0 then
12: R← R− [−k′i]P ▷ Addition
13: else
14: R← R+O ▷ Addition
15: end if
16: end for
17: return R
18: end function

Through the example we see that, although w is still 4, the absolute value
of all the recoded digits are at most three bits. In other words, our effective
window size has been reduced to 3. After adapting Algorithm 2.3 to use the
recoded k value, we end up with Algorithm 2.4. The operation count of the
adapted algorithms is given by Equation 2.8.

#ops = 2w−2double+
(
2w−2 − 1

)
add︸ ︷︷ ︸

precomputation

+n · double+
⌈
n+ 1

w

⌉
add︸ ︷︷ ︸

loop

(2.8)

The gain achieved by recoding into signed form is only small. The signed
method eliminates about half of the precomputation operations. For a k of
256 bits and w = 5, this results in 264 doublings and 59 additions.
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2.3 Basic big-number arithmetic

2.3.1 Introduction

In ECC implementations we are often dealing with integers of 256 bits or
larger. This thesis presents an implementation for a 64-bit system, so these
integers are too large to fit into single registers. We have to split these
numbers into multiple parts, which we call limbs. More formally, a number z
is represented by a list of integers z0, . . . , zn−1, where z = zn−1b

n−1+. . .+z0b
0.

In this expression, every zi natively fits into a register; n is the amount of
limbs; and b is the radix, i.e. the factor between two adjacent limbs.
Let us sketch an intuitive example. Let us choose radix b = 100 and n = 4.
In this example, let us say no limb can have a value larger than 99. Then we
can store values up to 100.000.000.

z3 z2 z1 z0

12 34 56 78z =

Figure 2.6: Representation of z = 12.345.678 using four limbs, where each
limb zi < 100.

2.3.2 Addition and subtraction

It is easy to implement addition and subtraction. To compute x+ y = z we
add x and y limb-wise. However, the sum of some xi and yi may be larger
than b. In this case we have to carry the new digits to the next limb3.

x = 12 34 56 78
y = 0 87 20 72

+
12 121 76 150 carry

z = 13 21 77 50

Figure 2.7: Addition and single bit carry of two big integers.

Subtraction is applied roughly the same as addition, but instead of carrying
an overflowed bit, we have to borrow an underflowed bit. Instead of adding
this bit to the next limb, we subtract the bit from the next limb. Note that
this carry bit always propagates from the least significant limb to the most
significant limb.

3In the literature, the carry chain is sometimes called coefficient reduction.
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2.3.3 Redundant representation

A sometimes (computationally) expensive element of the representation
from the previous sections is the propagation of the carry bits during every
addition and subtraction. Because carry chains execute over all limbs in a
sequential order, the CPU cannot optimize the code by parallelizing instruc-
tions. To overcome this, implementors often choose to leave some headroom
in each limb, such that multiple additions can be computed before a limb
overflows.
This representation is called redundant representation4. In this representation, b
is not the maximum value that is possible, e.g. 264 for 64-bit systems. Instead
we choose b some other power of two, to have 64 − log2 b bits left before
overflowing.

2.3.4 Multiplication

The traditional method of multiplying two integers is—just like addition and
subtraction—very intuitive. To multiply two integers x · y = z we compute
for each destination limb zk:

zk =
∑

i+j=k

xi · yj (2.9)

Equation 2.9 assumes that no overflows will occur. We can achieve this by
choosing a proper radix.
We see thatwemust twice iterate through each of the input operands. Indeed,
the complexity of the traditional multiplication method is O(n2), where n
is the amount of limbs. Therefore, multiplying large numbers is a lot more
expensive than adding or subtracting them.
In the general case, squaring an integer is not very different frommultiplying
two different integers. The complexity is still O(n2), but because xiyj = xjyi
we can eliminate almost half of the inner multiply operations.

2.3.5 Karatsuba multiplication

For getting a faster multiplication algorithm we can try using Karatsuba
multiplication [39]. This reduces the complexity of the multiplication to
O(nlog2 3) ≈ O(n1.58). To compute the product of two integers using Karat-
suba’s method, we split each operand into its upper and lower parts: So the
operand x = β · xH + xL where both xH and xL are smaller than the chosen
base β. Now the product z = β2zH + βzM + zL is computed using the steps
described by algorithm 2.5.

4Sometimes called sparse representation.
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Algorithm 2.5 Karatsuba multiplication algorithm
1: procedure Karatsuba(xH , xL, yH , yL) ▷ Compute z = x · y
2: zH ← xH · yH
3: zL ← xL · yL
4: zM ← (xH + xL) · (yH + yL)− zH − zL
5: end procedure

Algorithm 2.5 uses only three inner multiplications, instead of the four that
we would expect from equation 2.9. With one level of Karatsuba multipli-
cations, we spare one quarter of the multiplication operations that would
be needed otherwise. We can improve the complexity even further by im-
plementing the inner multiplications in lines 2–4 recursively using the same
Karatsuba trick. However, due to the amount of addition and subtraction
operations added by the algorithm, adding more Karatsuba layers will not
always achieve better performance.

2.4 Side-channel attacks

Any algorithm can be viewed simply as a mapping from an input to an
output. The output contains only that what is inserted after the return

statement. This intuition suggests that an algorithm does not disclose any
information except for its output. However, while this idea holds in an abstract
sense, it is simply not true for algorithms implemented on real hardware. In
reality, implementations have physical properties that may depend on their
inputs. Basic examples of these kinds of properties are runtime, memory
usage, power consumption, etc.
These “information channels”, through which we can distill pieces of in-
formation are called side channels. In a formal sense, side channels are un-
intended features of an implementation, through which an attacker can
gain information about a secret input. Over the years, different types of
side-channel attacks have been devised. This section will restrict itself to
describing timing attacks, which are relevant for the CPU’s that are targeted
in this thesis.

2.4.1 Regular timing attacks

Timing attacks are a type of side-channel attack that are easy to execute. They
were introduced by Kocher in 1996 [42]. Timing attacks measure the runtime
of an implementation or parts of that implementation.
As an example, let’s look again at the double-and-add algorithm from Sub-
section 2.2.1. If we look at line 9 from the the double-and-add algorithm
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(Alg. 2.1 on page 15), we see that Q← Q+O is computed whenever ki = 0.
An implementor could choose to omit this addition, because it is a no-op.
Now the runtime of the algorithm depends directly on the key k. An attacker
can measure this and easily figure out the Hamming weight of the key.

2.4.2 Cache timing attacks

Amore modern type of attack, based on the timing attack from the previous
section, is the cache-timing attack. These attacks exploit the cache latency of a
CPU to figure out which memory regions are accessed by the cryptographic
algorithms. Using this information, an attacker can deducewhich code paths
are being taken and which data is being accessed.
In most cases, cache-timing attacks run on the same processor as the algo-
rithm that is being executed, which allows them to actively manipulate the
contents of the CPU cache. The ability to manipulate the cache is the reason
that cache-timing attacks are generally more powerful than regular timing at-
tacks. There exist different types of strategies to perform cache timing attack,
e.g., Prime+Probe [64], Cache+Evict [64], Flush+Reload [65].
The most basic attack is the Prime+Probe attack: Assume that we share
the read-only memory region that holds the lookup tables that are used
by some scalar-multiplication algorithm. First the attacker makes sure no
RAM is loaded into the cache. Then they wait for a run of the algorithm to
happen. After the crypto-algorithm is done, it will have read from a selection
of memory addresses. Now the attacker reads every memory address and
measures the time it takes retrieve it. By the time it takes to retrieve a value,
they know whether a table entry has been loaded into the cache during the
encryption. Using this information, the attacker can deduce vital information
about the internal encryption values and the encryption key.
Note that we do not even need to know every bit of the key. Every bit that is
correctly recovered using the attack reduces the security of the encryption
by a factor 2. If we have enough key bits we can brute force the rest. When
dealing with elliptic-curve cryptography, we can even employ a lattice at-
tack to recover the bits using an efficient lattice reduction technique [5, 55]
(e.g. LLL [44] or BKZ [60]).

2.4.3 Preventing side channels

Side-channels attacks are powerful and have been used to extract keys from
a lot of cryptographic software over the years. A survey from 2018 by Ge,
Yarom, Cock, and Heiser shows dozens of works describing side channel
attacks on common cryptographic libraries [28]. It has been determined that
these attacks are practical, not just academic [45].
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Multiple methods exist to prevent side-channel attacks in cryptographic
software. The first and foremostmethod is towrite all cryptographic software
in constant time5. As the term suggests, software that is constant time is
implemented in such a way that the runtime of an execution does not depend
on any secret inputs. This can be achieved by using standard programming
tricks. For example, the programmer can replace an if-else expression
by a piece of code that executes both blocks and selects the correct result.
Listings 1 and 2 show an example of this in C.

Listing 1 Insecure code snippet.
// In this snippet, key_bit is some bit in the secret key (0 or 1).

int32_t result;

if (key_bit) {

result = a();

} else {

result = b();

}

In listing 2, we multiply the results by the key bit value and its negation.
Because the key bit value is 1 or 0, this keeps the correct value and sets the
other to 0. Both values are added to make result.

Listing 2 Secure version of listing 1.
int32_t result = (a() * key_bit) + (b() * !key_bit);

In practice we will not use * and +. For efficiency reasons we rather expand
the key bit value to a bitmask, i.e. 0x00000000 or 0xFFFFFFFF for 32-bit
values. Then we use a bitwise AND operation to select the correct value and
a bitwise OR operation to combine them into the result. An updated version
of Listing 2—using bitwise operations—is shown in Listing 3.

Listing 3More efficient version of Listing 2.
// Intel uses two's complement, so we can use negation here.

const uint32_t mask = -(int32_t)key_bit;

int32_t result = (a() & mask) | (b() & ~mask);

5We could write “constant time” and “constant lookup” here, to explicitly include cache
timing attacks in our argument. However—because of the CPU cache and other similar
effects—lookups from variable addresses are always variable in their execution time. There-
fore, “constant time” implies “constant lookup”. In this thesis, whenever the term “constant
time” is used, both properties are implied.

24



Chapter 3

Choosing a curve

Recall from Chapter 1 that the goal of this thesis is to benchmark the ben-
efit of the x-only coordinate ladder of Montgomery curves—in particular
Curve25519 [8]—relative to the more complex complete addition formulas
for Weierstrass curves.
Therefore we will choose a prime-order curve that is similar to Bernstein’s
Curve25519. Aside from being able to make a good comparison, we can
furthermore build on some of the optimizations that have been developed
specifically for Curve25519 [12, 21, 25, 27]. Our second priority will be to
choose properties that are “straightforward”, i.e. properties that are often
found in other standardized curves. In general, we try to find an answer
to the question: What would Curve25519 have looked like, had it been a
prime-order curve?
The curve that we have eventually chosen was proposed by P. Barreto in
May 2017 [3]. The nameless curve is defined over F2255−19. It is described
by equation 3.1 and a suitable generator is G = (−7, 114). The Sage script
that was used to verify the curve is listed in Appendix B.

E : y2 = x3 − 3x+ 13318 (3.1)

As mentioned in the introduction of this chapter, using the same field as
Curve25519 allows us to build upon some of the computational tricks that
have been developed for this field. Moreover, becausemany implementations
for Curve25519 are released into the public domain, we can even copy and
adapt portions of previous implementations.
As is the point of this thesis, the chosen curve is a prime-order curve. Its
order is given by

N = ℓ = 2255 + 325610659388873400306201440571661405155. (3.2)
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3.1 Choice of a

A reasonable alternative to Barreto’s curve is the Weierstrass curve defined
over F2255−19 described by curve equation 3.3.

E : y2 = x3 + x+ 26606 (3.3)

Its difference with Barreto’s curve is that a = 1, instead of a = −3. The first
reason we choose a = −3 instead of 1 is that—depending on the addition for-
mulas that are used—it results inmore efficient curve arithmetic [17]. Indeed,
the Renes-Costello-Batina complete addition formulas have a specialized
case for a = −3 [57, Section 3.2]. The second reason is that various cryp-
tographic standards have adopted these kinds of curves [26, 18, 52, 48, 20].
Our results will apply to more other commonly used curves if we mimic the
standards.

3.2 Choice of b

The first prime order curve that we find for q = 2255 − 19 and a = −3 is the
curve for which b = 101. However, in order to mitigate invalid curve attacks
in some instances, we have opted for a curve of which the quadratic twist is
also of prime order. The first curve of which the twist is also of prime order
is the curve with b = 13318.
These mitigations will take effect when using x-only scalar-multiplication
ladders. At this point in time, only [61] describes x-only exceptionless
addition formulas for general Weierstrass curves. When other addition
formulas are used, point validation is almost always mandatory.1

Other than choosing the value of b, the curve is left unchanged. In other
words, we can choose this property “for free”. With this in mind, it makes
no sense not to choose this property.

3.3 Cofactor security

Bad implementations of cryptographic protocols using curves with a cofactor
h > 1 can be vulnerable to small-subgroup attacks [23]. In a small-subgroup
attack, the attacker uses the nontrivial cofactor to force a point P into a
subgroup that is smaller than ℓ. If h is small—which it likely is, because
otherwise N would be smooth—the DLP becomes very easy to solve in this

1An exception to this rule are the Brier-Joye addition formulas [16]. In the case of the
Brier-Joye formulas, an implementor can choose to skip the point-validation step. However, if
they do, the must reduce the secret scalar modulo the curve order and the twist order, before
starting the scalar multiplication. Otherwise, exceptions may occur when computing scalar
multiplications of an invalid point.

26



subgroup. An attacker can use this property to generate signatures that
verify correctly by badly implemented protocols.
To mitigate against this attack, implementors must check if [ℓ]P = O during
the point validation stage. If this check does not pass, the algorithm must
reject the point, as it is invalid.
Another approach to prevent the small-subgroup attack is to disallow users
to sign arbitrary messages, and only allowing them to sign hashes of mes-
sages [9]. This prevents an attacker from generating malicious signatures,
because they must brute force messages until they find a hash that maps to a
point of order smaller than ℓ. However, a curve’s cofactor is small (generally,
h ≤ 8), this means the amount of small-subgroup points on the curve is
small. Therefore, the probability of hitting a small-subgroup point becomes
negligible, which makes the attack infeasible. This mitigation works mainly
for traditional signatures on messages, such as Schnorr signatures [59] and
ECDSA [38]. It does not work for protocols where the signed data can be
arbitrarily chosen by an attacker, for example in ring signatures [58].
Barreto’s curve is of prime order, i.e. it has a trivial cofactor. It is therefore
immune to small-subgroup attacks. By completely eliminating this attack,
these curves are preferable above non-prime order curves, when constructing
more complex cryptographic protocols.

3.4 Indistinguishability

Lastly, a feature that may be required from an elliptic curve is that its points
can be represented as uniformly random strings.2 To achieve this, we need a
suitable point-compression algorithm for our curve. A popular option for
Edwards curves is Elligator, which implements a system wherein points are
compressed into uniformly random strings [10]. Elligator Squared is a less
known alternative for prime order curves [63]. It can be used to compress
points into indistinguishable strings. Elligator Squared works for all prime
order curves, including Barreto’s curve.

2This is useful when building censorship-circumvention tools.
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Chapter 4

Field arithmetic

Before we can evaluate the practical performance of the Renes-Costello-
Batina formulas from [57] compared to the Curve25519 formulas, we have
to select a reference point first.
In this thesis we will compare the performance of our implementation to the
performance of the Sandy2x [21] implementation. Sandy2x is an optimized
implementation of Curve25519 scalarmultiplication, targeted to Intel’s Sandy
Bridge microarchitecture.
The exact part of Sandy2x that we will try to beat is its variable-point scalar-
multiplication algorithm. In variable-point scalar multiplication the multi-
plied point is different for each multiplication. In contrast, in base-point scalar
multiplication the multiplied point is fixed. In this case the implementor can
precompute a lot values at compile-time.
To get an implementation that is fast and side-channel resistant, we cannot
just use a generic big-integer arithmetic library. Often, these libraries are
not side-channel resistant. Furthermore, their gain in general applicability
is paid in performance loss. Instead, we write the core of the algorithm—
including the finite-field arithmetic—in (NASM) assembly language.
To speed up our computations we use AVX to compute some finite-field
arithmetic from the addition formulas in a vectorized manner. In other
words, some arithmetic operations will be computed in parallel. This chapter
only describes how the finite-field arithmetic is implemented. Later—in
Chapter 5—we will describe how the arithmetic routines are used in the
addition formulas.
In our research we have studied two different approaches to implement the
finite-field arithmetic. The first approach uses 2× vectorized 64-bit integers
in radix 225.5. This approach was used by [12] and it is the method that
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Sandy2x uses. The second approach uses 4× vectorized double-precision
floating-point numbers in radix 221.25. Both methods will be described in
depth in Sections 4.2 and 4.3, respectively. In the end, this thesis has chosen
to use the floating-point method for the actual implementation.

4.1 The Sandy Bridge microarchitecture

The implementation described in this thesis targets Intel’s Sandy Bridge mi-
croarchitecture. Sandy Bridge is a superscalar processor, meaning that it can
execute multiple instruction pipelines in parallel. Furthermore, it is the first
processor from Intel that features Advanced Vector Extensions (AVX). AVX is
an instruction set that features various useful SIMD instructions. In particu-
lar, the architecture has instructions for 128-bit-wide packed 64-bit integer
arithmetic and 256-bit-wide packed double floating-point arithmetic.
To understand what the performance of low-level algorithms—like those
described later in this chapter—is composed of, we must first understand
some of the components that the CPU provides. This subsection summarizes
Section 2.3 from Intel’s Optimization Reference Manual [37], particularly
the elements that are relevant for this thesis.
The CPU’s pipeline is split up in two parts: The front end and the back end1.
The front end is differentiated from the back end in that it executes its work
in-order, while the back end executes its work out-of-order2. The most rel-
evant group of components in the front end are the instruction decoders.
The decoders—Sandy Bridge has four—decode the instructions in the code
into micro operations (µops), which are the basic operations that the CPU
will execute. For instance, a push rax instruction will be decoded into one
mov [rsp], rax µop and one sub rsp, 8 µop. After decoding the instruc-
tions, the renamer will map the logical registers in the code to physical regis-
ters on the CPU. When a µop is ready, it will enter the scheduler.
The scheduler is part of the back end. Every cycle, the scheduler selects
the µops that are ready, and dispatches them to one of the six CPU ports
for execution. These ports perform the actual computation, and write the
result back to the physical registers. Each port implements a different set
of functionality, so different kinds of µops are dispatched to different ports.
Furthermore, the scheduler can dispatch multiple µops per cycle, which is
how the CPU executes instructions in parallel.
Most µops take a couple of cycles before their result is written back and
they retire. This amount of cycles is called the latency of an instruction. The
CPU ports execute their µops in a pipeline, so a port can start executing

1These are sometimes called the fused domain and the unfused domain.
2In the literature and manuals, this is often abbreviated as OoO.
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new µops while other µops on that port have not finished yet. Because
some functionality is implemented in multiple different ports—for example,
memory loads are implemented on both port 2 and port 3—the throughput
of an instruction can be more than one instruction per cycle.
In some sections in this thesis, an assembly code listing is provided for
illustrational purposes. Appendix A lists the µops, latency and reciprocal
throughput for the instructions that are relevant for this thesis. Through the
coming sections, this list may help in understanding how some of the code
listings translate into cycle counts.

4.2 Radix 225.5 in integer registers

In the radix 225.5-representation, a field element f ∈ F2255−19 is put into 10
64-bit registers and is operated on using unsigned3 operations. Each limb’s
base is defined by bi = 2⌈25.5i⌉, i.e. every base is rounded up to the next
power of 2. In essence, f is represented as

f = f0+226f1+251f2+277f3+2102f4+2128f5+2153f6+2179f7+2204f8+2230f9.

Before adding some f and g into h, we must first ensure that h will fit in
its limbs. If this is not the case, we must carry one or both of the operands
before computing their sum. After ensuring that no overflow will occur, we
compute by limb-wise addition: hi = fi + gi.
Subtraction works almost the same as addition. However, because we are
using unsigned integer limbs, we must also ensure that no underflows can
occur in the operation. In other words, when computing h = f − g, we must
guarantee that fi ≥ gi for each limb i. An easy method to ensure this is to
add a multiple of p (= 2255− 19) to f before computing the subtraction. The
multiple n is always chosen such that f ′

i = fi + (np)i ≥ gi.

4.2.1 Carry

When f nears overflowing its registers, we must execute a carry chain to
reduce the limb’s values to occupy only the bottom part of their registers.

3When we use signed limbs, we need an instruction that shifts packed quadwords to the
right, while shifting in sign bits, in for our carry chain in Section 4.2.1. Such an arithmetic
shift operation—which would be called vpsraq—has never been implemented for the Sandy
Bridge microarchitecture. Indeed, the first implementation of the vpsraq-instruction was in
AVX-512, in the Knight’s Landing and Skylake microarchitectures.

Instead, we only have the logical shift instruction vpsrlq operation, which we use in
Listing 4. However, for our purposes, we can only use this instruction for unsigned limbs.
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Define, for this carry chain, the following functions:

bottom(fi) = fi mod (bi+1/bi) (4.1)
top(fi) = fi − bottom(fi) (4.2)

These functions respectively select the bottom part and the top part from
a limb. We use them to compute a step in the carry chain. Algorithm 4.1
shows the operations that are used to carry from one limb to another.

Algorithm 4.1 Implementation of a carry step from limb fa to fa+1.
1: procedure CarryStep ▷ Perform a single carry step
2: fa+1 ← fa+1 + top(fa) · (ba/ba+1)
3: fa ← bottom(fa)
4: end procedure

It is clear that an exception occurs when limb 9 is carried back to limb 0,
because we are passing the fieldmodulus p. To carry f9 to f0, let us first carry
f9 to the virtual limb f10 in the samemanner as we have done with the others.
We see that the value represented by f10 in f is 2255f10 = (p+19)f10 ≡ 19f10
(mod p). So to carry f9 to f0 we need only to multiply the carried part by 19
before adding it to f0.
When we implement a 2× vectorized carry chain for the Sandy Bridge mi-
croarchitecture, we only need three instructions per carry step. As an ex-
ample, the instruction listing for the carry step from f0 to f1 is shown in
Listing 4.

Listing 4 Single carry step for radix 225.5.
1 ; Inputs:

2 ; - xmm0: f0
3 ; - [rel .MASK26]: times 2 dq 0x3FFFFFF

4 ; Outputs:

5 ; - xmm0: f0
6 ; - xmm1: f1
7 vpsrlq xmm15, xmm0, 26 ; t← top(f0) · 2−26

8 vpaddq xmm1, xmm1, xmm15 ; f1 ← f1 + t
9 vpand xmm0, xmm0, oword [rel .MASK26] ; f0 ← bottom(f0)

An efficient way to implement themultiplication by 19 is to compute 24c+(c+
c+ c). For this routine, we need one additional vpsllq and three additional
vpaddq instructions.
The easiest method to implement the carry chain is to go through all limbs
sequentially, as depicted in Figure 4.1.
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f0 → f1 → f2 → f3 → f4 → f5 → f6 → f7 → f8 → f9 → f0 → f1

Figure 4.1: Sequential 10-limb carry chain.

In Listing 4, all three instructions vpsrlq, vpaddq and vpand can be scheduled
on ports 0, 1 and 5 simultaneously. Furthermore, the latency of the carry
step is two cycles. This means that, with this strategy, a data hazard occurs in
every step of the carry ripple, when the vpaddq instruction (from Listing 4)
has to wait an additional cycle before the value in xmm15 is ready. To solve
this problem, [22] introduces an interleaved carry chain, which is also used by
Sandy2x. It is displayed in Figure 4.2.

f0 → f1 → f2 → f3 → f4 → f5 → f6,

f5 → f6 → f7 → f8 → f9 → f0 → f1

Figure 4.2: Interleaved 10-limb carry chain.

While the interleaved chain is more expensive in the amount of steps, the
two separate carry chains are computed in parallel, which almost halves
the routine’s latency. Because the interleaved carry chain has 12 carry steps,
each with a reciprocal throughput of 1cc, we expect the lower-bound of the
reciprocal throughput to be 12cc or 6cc/op4.

4.2.2 Multiplication

Sandy2x uses the multiplication routine as described in [12]. It uses “school-
book” multiplication, which has already been described in Subsection 2.3.4.
Just as the carry chain from the previous sections, the multiplication routine
is implemented 2× parallel, using vectorized registers.
It manages modular arithmetic in the same manner as the carry chain from
the previous section: Any product that is written into a limb hi where i ≥ 10
is multiplied by 19, and then added into hi−10. If we use Equation 2.9 and
write out the complete multiplication routine, the formulas for h = f · g
become

4cycles per operation
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h0=f0g0+38f1g11+19f2g10+38f3g9 +19f4g8 +38f5g7 +19f6g6 +38f7g5 +19f8g4 +38f9g3,
h1=f0g1+ f1g0 +19f2g11+19f3g10+19f4g9 +19f5g8 +19f6g7 +19f7g6 +19f8g5 +19f9g4,
h2=f0g2+ 2f1g1 + f2g0 +38f3g11+19f4g10+38f5g9 +19f6g8 +38f7g7 +19f8g6 +38f9g5,
h3=f0g3+ f1g2 + f2g1 + f3g0 +19f4g11+19f5g10+19f6g9 +19f7g8 +19f8g7 +19f9g6,
h4=f0g4+ 2f1g3 + f2g2 + 2f3g1 + f4g0 +38f5g11+19f6g10+38f7g9 +19f8g8 +38f9g7,
h5=f0g5+ f1g4 + f2g3 + f3g2 + f4g1 + f5g0 +19f6g11+19f7g10+19f8g9 +19f9g8,
h6=f0g6+ 2f1g5 + f2g4 + 2f3g3 + f4g2 + 2f5g1 + f6g0 +38f7g11+19f8g10+38f9g9,
h7=f0g7+ f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 +19f8g11+19f9g10,
h8=f0g8+ 2f1g7 + f2g6 + 2f3g5 + f4g4 + 2f5g3 + f6g2 + 2f7g1 + f8g0 +38f9g11,
h9=f0g9+ f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0.

In this implementation, 9 vpmuludq instructions are used to precompute a
list of 19g0, . . . , 19g9 values. Furthermore, the values 2f1, 2f3, . . . , 2f9 are
precomputed using 5 vpaddq instructions. This results in a multiplication
algorithm that uses 109 vpmuludq and 95 vpaddq instructions.
vpaddq can be executed on ports 1 and 5, while vpmuludq can only be ex-
ecuted on port 0. Therefore, we expect port 0 to be the bottleneck during
the execution of the multiplication algorithm. This is also a good reason to
implement the doubling of the fi values using additions instead of shifts,
as using the vpshlq instruction would increase the pressure on port 0 even
more. Because in this computation we are using 2× vectorized registers, we
expect the lower bound cost of this algorithm to be 54.5cc/op.
We can adapt the multiplication routine to get an algorithm for squaring
numbers by substituting g for f in the formulas above. This eliminates an
innermultiplication for every case where figj = fjgi. After this optimization,
the squaring algorithm requires only 64 vpmuludq instructions, which is a
speedup of about 60 percent.

4.3 Radix 221.25 in floating-point registers

The 10-limb approach from Section 4.2 provides us with arithmetic that
can be 2× vectorized using the instructions provided by the Intel’s SSE2
instructions, which are implemented in Sandy Bridge. Apart from featuring
2× vectorized integer instructions, the Sandy Bridge microarchitecture adds
instructions for 4× vectorized double-precision floating-point arithmetic.
When using this instruction set, we can implement the finite-field arithmetic
4× parallel, instead of 2×, yielding even better performance.

4.3.1 Floating points

Before introducing radix-221.25 representation, let us first briefly review the
format of the floating-point numbers used in this section. Double-precision
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floating points (or doubles for short) were introduced in [35]5.
A double consists of 52 mantissa m bits (m1, . . . ,m52) which encode the
fraction of the number, 11 exponent e bits and a sign bit s. Every floating-
point number is normalized, which means that, for some number z = m · 2k,
the real exponent k is always selected such that 1 ≤ z · 2−k < 2. Because of
this, the first binary digit of z is always 1, and does not need to be stored.
Therefore, we have an extra “virtual” mantissa bit, which I will callm0. With
m0 the actual precision of the mantissa is 53 bits.

sign exponent mantissa

63 52 0

Figure 4.3: Double-precision floating-point format.

To be able to encode numbers with negative exponents, e is offset from zero
by 1023, i.e. e = k + 1023. Furthermore, the exponent values 0 and 2047
are reserved to encoding special values. For example, a value with e = 0
encodes signed zero. Using this information, we see that the actual value of
a double is given by

z = (−1)s
(

52∑
i=0

2−imi

)
2e−1023, wherem0 = 1.

Using doubles with 53-bit precision, we can simulate integer registers of 53
bits. To guarantee that no rounding errors occur in the underlying floating-
point arithmetic, we use the same strategy as in Section 4.2: ensure that
limb values always fit in their registers, or use a carry chain to reduce the
amount of bits in each register before performing operations that might
overflow.
Building on this idea, [8] recommends—but does not implement—radix
221.25, based on the arithmetic described in [7]. In this representation, f is
put into 12 signed double-precision floating-point registers. Doubles already
store their base in the exponent, which is large enough for our purposes.
Therefore, we do not have to introduce a base for f ’s limbs. Indeed, the value
is computed by just computing the sum of the limbs:

f =

11∑
i=0

fi

5However, for a more general introduction to floats I instead recommend reading Gold-
berg’s guide on floating-point arithmetic [30, Section 2].
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However, because we cannot store values with more than 53 bits of mantissa
precision in a register, wemust restrict each limb’s value. Where bi = 2⌈21.25i⌉,
for each limb fi, it must hold that

1. fi ∈ biZ, and
2. |fi| < 253bi.

4.3.2 Carry

As in Subsection 4.2.1, we define the following functions:

bottom(fi) = fi mod bi+1 (4.3)
top(fi) = fi − bottom(fi) (4.4)

The Intel architecture supports no nativemodulo operation on floating points.
Instead we compute top(fi) by subsequently adding and subtracting a large
constant ci = 3 · 251bi+1, forcing the processor to throw away the lower
mantissa bits. The following reasoning shows why this results in the correct
carried value.6

Consider that the we have a limb fi, for which−251bi+1 ≤ fi ≤ 251bi+1. First
we add ci to fi yielding z = fi+3 ·251bi+1 and see that 252bi+1 ≤ z ≤ 253bi+1.
After the value z is rounded by the CPU, we get z′.
From the bounds of z, we see that leftmost (virtual) mantissa bitmz′,0 of the
rounded value z′ will represent a power of two that is at least 252bi+1. This
means that the rightmost bitmz′,52 represents at least bi+1, i.e. we conclude
that z′ ∈ bi+1Z. We now compute top(fi) = z′ − ci. Because both z′, ci ∈
bi+1Z, we know that top(fi) ∈ bi+1Z. A visual depiction of these two steps
is shown in Figure 4.4.
After having computed top(fi), computing the bottom part of fi is easily
obtained by computing bottom(fi) = fi − top(fi).
To carry f11 over to f0—just as with radix 225.5—we first imagine a virtual
limb f12. By definition, b12 = 2255 and thus f12 ∈ 2255Z. Observe that
2255 ≡ 19 ⇒ 1 ≡ 19 · 2−255 (mod p). So to carry f12 to f0, we just have to
multiply by 19 · 2−255. We see that the limb restrictions mentioned in the
introduction hold for the resulting value:

1. Because f12 ∈ 2255Z, we know that 19 · 2−255f12 ∈ 19Z. b0 = 1 ⇒
19 · 2−255f12 ∈ b0Z.

2. By assumption, |f11| < 253b11 = 2287. So the virtual limb |f12| < 2287.
Then, the carried value 19 · 2−255f12 < 19 · 232 < 253b0.

6This argumentation is based on Theorem 2.4 from [7] and the proof that is included with
it.
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253bi+1 253bi bi+1 bi

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?fi:

+ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+
ci:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0+ 1 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?z′:

+ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−
ci:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0result:

Figure 4.4: Visual representation of top using floating points with 53 bits of
mantissa precision. The sign of the number is shown in blue and themantissa
is shown in red. We see that after adding ci, the floating-point precision
“window” shifts to the left. During this shift, the bits on the bottom of z are
lost due to rounding (visualized in gray). After subtracting ci from z′, the
window is shifted back and we get the resulting top(fi), which consists of
only the most significant bits of fi.

In code, a single carry step needs 5 instructions. In Listing 5, the 4×-
vectorized carry step from f0 to f1 is shown. The multiplication of f12 by 19 ·
2−255 is implemented using a regular vmulpd ymmX, [rel .reduceconstant]

instruction.

Listing 5 Single carry step for radix 221.25 from limb 0 to limb 1.
1 vmovapd ymm14, yword [rel .c_0] ; load c0
2 vaddpd ymm15, ymm0, ymm14 ; z′ ← round(f0 + c0)
3 vsubpd ymm15, ymm15, ymm14 ; t← round(z′ − c0)
4 vaddpd ymm1, ymm1, ymm15 ; f1 ← round(f1 + t)
5 vsubpd ymm0, ymm0, ymm15 ; f0 ← round(f0 − t)

In contrast to the code in Listing 4, in Listing 5 all arithmetic instructions ex-
ecute on port 1. Furthermore, every v{add,sub}pd instruction has a latency
of 3 cycles. Consequently, the latency of one carry step is the sum of the
latencies of instructions 2 – 4, i.e. the latency is 3 ·3 = 9cc. Still, the reciprocal
throughput is only 4cc.
In a sequential carry chain the back end is stalledmost of the time due to data
hazards. We expect a single carry chain to use 9 · 14 = 126cc or 31.5cc/op.
Even in a twice interleaved carry chain, the latency is still 63cc, while the
reciprocal throughput is still only 56cc. In other words, the twice interleaved
case still has data hazards.
To overcome this, we implement a triple interleaved carry chain, as displayed
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in Figure 4.5. In this case, the latency is reduced to 45cc, while the recip-
rocal throughput is 60cc. Conversely the bottleneck is not the latency, but
the reciprocal throughput of the carry chain, of which the lower bound is
15cc/op.

f0 →f1 → f2 → f3 →f4 →f5,

f4 →f5 → f6 → f7 →f8 →f9,

f8 →f9 →f10 →f11 →f0 →f1

Figure 4.5: Triple interleaved 12-limb carry chain.

4.3.3 Multiplication

For the 12-limb representation, we can choose to implement the multiply
operation using the schoolbook method or using Karatsuba’s trick. Before
looking at Karatsuba multiplication in Subsection 4.3.4, we will look at the
performance of the schoolbook multiplication method.
Floating points themselves store their exponents, so no additional realign-
ment of the limbs is needed. Similar to radix 225.5 multiplication, any product
that is written into some limb hi, where i ≥ 12 is multiplied by (2−255 · 19

)
and added into hi−12. In the end, for each limb, the multiplication of h = f ·g
is defined by:

hk =
∑

i+j=k

figj +
∑

i+j=k+12

(
2−255 · 19

)
figj

All in all, the multiplication routine uses 144 vmulpd instructions for the
inner multiplication operations. When we include the precomputation of(
2−255 · 19

)
f1, . . . ,

(
2−255 · 19

)
f11, we end up with 153 vmulpd instructions

in total. Furthermore, the routine uses 132 vaddpd instructions.
The execution of vmulpd and vaddpd happens on ports 0 and 1 respectively.
The pressure on port 0 is the performance bottleneck, so we expect the school-
book multiplication algorithm to take 144cc. Because we are computing 4
multiplications in parallel, this results in 36cc/op.

4.3.4 Karatsuba multiplication

As we have seen in Subsection 2.3.5, we can try Karatsuba multiplication
to optimize the multiplication performance. The Karatsuba multiplication
algorithm for radix 221.25 is presented in Algorithm 4.2.
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For optimization reasons, we have rewritten the computation extensively
using basic math rules.7 Themajority of tweaks are inspired from [34].
We see that the Karatsuba multiplication algorithm is more complex than
the schoolbook multiplication method. However, when we count up the
amount of inner multiplications in Table 4.1, we see that we need slightly
fewer vmulpd instructions. Particularly, the Karatsuba method is about 8%
faster.
Table 4.1: Overview of the amount of vmulpd instructions needed in Algo-
rithm 4.2.

lines operation count
16, 17 precompute 2−128fH 6
16, 18 precompute 2−128gH 6
15 compute L 36
16 compute H 36
19 computeM 36

20 – 31 multiply by 2−128 5
20 – 31 multiply by 2128 6
20 – 31 multiply by 38 11
Total 142

The resulting assembly snippet has a port pressure of 142 µops on port 0 and
130 µops on port 1. If we added more than 12 vaddpd or vsubpd instructions,
port 1 would become the bottleneck. Therefore, we expect that adding
another level of Karatsuba multiplication would not be beneficial for the
performance of the multiplication algorithm. Besides, the implementation
of another level of Karatsuba multiplication would need to align the limb
exponents on 64-bit offsets. The result is dozens of extra multiplications by
2−64 and 264.
After implementing Karatsuba multiplication as a means of optimization
there is only one optimization that we found we could do to reduce the pres-
sure on port 0 even more. That is, we can implement some multiplications
by 2−128 using bitwise operations. Specifically, we will implement some
multiplications by 2−128 by setting the bit that encodes 2128 in the float’s
exponent from 1 to 0.
Consider the function UnsetBit59(z), which sets the 59th bit of a floating-
point to 0. This function does not implement multiplication by 2−128 for
every z. Instead, we will look for which inputs this function behaves correctly.

7The main benefit of these rewrites is the elimination of some subtractions in the accumu-
lation in lines 20 – 31. The positive operand of the vsubpd instruction cannot be immediately
loaded from memory and often needs an extra vmovapd instruction. Without these subtrac-
tions, we are able to better optimize for micro-fusion (see also [37, Section 3.4.2.1]).
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Algorithm 4.2 Karatsuba multiplication algorithm
1: function Multiply6(a, b) ▷ 6-limb schoolbook multiplication
2: (c0, . . . , c10)← (0, . . . , 0)
3: for i from 0 to 5 do
4: for j from 0 to 5 do
5: ci+j = ci+j + aibj
6: end for
7: end for
8: return (c0, . . . , c10)
9: end function

10: procedure Karatsuba(f, g) ▷ Compute h = f · g
11: Write fL = (f0, . . . , f5)
12: Write fH = (f6, . . . , f11)
13: Write gL = (g0, . . . , g5)
14: Write gH = (g6, . . . , g11)

15: (L0, . . . , L10)←Multiply6(fL, gL) ▷ Compute L
16: (H0, . . . ,H10)←Multiply6(2−128fH , 2−128gH) ▷ Compute H

17: (fM,0, . . . , fM,5)← f0 −
(
2−128f6

)
, . . . , f5 −

(
2−128f11

)
18: (gM,0, . . . , gM,5)←

(
2−128g6

)
− g0, . . . ,

(
2−128g11

)
− g5

19: (M0, . . . ,M10)←Multiply6(fM , gM ) ▷ ComputeM

20: h0 ← L0 + 38H0 + 38 · 2−128(M6 + L6 +H6)
21: h1 ← L1 + 38H1 + 38 · 2−128(M7 + L7 +H7)
22: h2 ← L2 + 38H2 + 38 · 2−128(M8 + L8 +H8)
23: h3 ← L3 + 38H3 + 38 · 2−128(M9 + L9 +H9)
24: h4 ← L4 + 38H4 + 38 · 2−128(M10 + L10 +H10)
25: h5 ← L5 + 38H5

26: h6 ← L6 + 38H6 + 2128(M0 + L0 +H0)
27: h7 ← L7 + 38H7 + 2128(M1 + L1 +H1)
28: h8 ← L8 + 38H8 + 2128(M2 + L2 +H2)
29: h9 ← L9 + 38H9 + 2128(M3 + L3 +H3)
30: h10 ← L10 + 38H10 + 2128(M4 + L4 +H4)
31: h11 ← 2128(M5 + L5 +H5)
32: end procedure
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We will see that UnsetBit59(z) = 2−128z for all z where |z| < 2257 and
x ∈ 2129Z.
Let us first look at the case that |z| ≥ 2129. By assumption, |z| < 2257. We
see that the real exponent k is bounded by 129 ≤ k < 257. As such, the
floating-point’s exponents bits are bounded by 1152 ≤ e < 1280. Within
these bounds, the 7th bit of e is always set. Thus, we conclude that for
all 2129 ≤ |z| < 2257, the UnsetBit59 function is equal to UnsetBit59(x) =
2−128x.
The other case concerns x = 0. In this case, the exponent part e = 0. Whenwe
set the 7th exponent bit to 0, the value e remains zero. So for the value x = 0,
UnsetBit59 is equal to the identity: UnsetBit59(0) = 0 = 2−128 · 0.
Because of the restrictions we put on floating-point limbs, this means that
we can use UnsetBit59 for all multiplications by 2−128 on limbs fi where
2129 ≤ bi < 2257−53 = 2231. This is the case for b7 = 2145, b8 = 2170, b9 = 2192.
Futhermore we can useUnsetBit59 on the 11th limb from the input operands
to Algorithm 4.2. For all input operands it is guarantueed that |fi| < 225bi,
so 2129 ≤ b10 = 2213 < 2257−25 = 2232.
Using UnsetBit59, we replace 11 multiplications in Algorithm 4.2 by the
instruction vandpd ymmX, ymmX, [rel .unset59mask], where .unset59mask
holds the value 0xF7FFFFFFFFFFFFFF. We have moved a little bit of pressure
from port 0 to port 5, which was completely idle before this point.
In the end, we have a multiplication routine with 131 executions (vmulpd) on
port 0 and 130 executions on port 1 (v{add,sub}pd). Assuming the best case
scenario, wewill need 131/4 = 32.75cc/op. The 4× vectorizedmultiplication
routine using radix 221.25 is expected to be 66% faster than Sandy2x’s 2×
vectorized multiplication in radix 225.5. This is why—in this thesis—we have
chosen to implement the finite-field arithmetic in double-precision floating
points, using radix 221.25. In Chapter 7 we will see the tragic repercussions
of this choice8.
Note that we have not implemented custom arithmetic for squaring and
inversion. As we will see in the next chapter, we will not be able to put any
4× vectorized squaring routines in our addition formulas. Futhermore, we
will be reusing the inversion routines from another implementation.

8Spoiler: We underestimated the abysmal performance of the radix 221.25 carry chain.
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Chapter 5

Point doubling and addition

After having constructed our routines for arithmetic in F2255−19, it is time
to put these routines to work in the curve addition formulas. As we have
mentioned a couple of times before, we are employing the addition formulas
that have been devised by Renes, Costello, and Batina in 2016. Specifically,
we will be using the formulas for the special case where a = −3. In [57], the
relevant algorithms are Algorithm 6 for point doubling, and Algorithm 4 for
point addition.
These formulas use homogeneous projective coordinates. That is, every
coordinate (x, y) is represented as a tuple (X : Y : Z) = (λx : λy : λ), where
λ ∈ Z. To map a projective coordinate back to its affine representation, we
have to divide X and Y by λ (= Z). Then (x, y) = (XZ , YZ ). The benefit
of using a projective coordinate system is that any inversions in addition
formulas can be eliminated, because for all c1, c2 it holds that ( x

c1
, y
c2
) = (X :

Y : c1c2Z). An inversion operation in F2255−19 involves hundreds of field
multiplications and squarings. So eliminating these inversions leaves us
with a scalar-multiplication algorithm that is much faster.
The Renes-Costello-Batina formulas are written with the presumption that
memory space is scarce. However, the Sandy Bridge microarchitecture has
32KB of L1 data cache, so we do not need to worry about this. For the sake
of clarity, we will therefore rewrite the algorithms from [57] into static single
assignment (SSA) form. This will make it easier to rewrite the algorithms
and eliminate operations.
In this chapter, we will construct routines for doubling and addition of
points on Barreto’s curve, which we will use in the next chapter. To this
end, we have constructed subroutines that allow us to make use of the 4×
vectorized multiplications in Chapter 4. Note that the optimizations devised
in this chapter need not specifically use radix 221.25 arithmetic. Whenever 4×
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vectorized multiplication routines are provided, these optimizations apply.
For instance, Intel’s Haswell microarchitecture supports 4× packed 64-bit
integer arithmetic, so these optimizations could be implemented on Haswell
using radix 225.5.

5.1 Doubling

The literal Renes-Costello-Batina formulas for doubling a point on Barreto’s
curve are

X3 = 2XY (Y 2 + 3(2XZ − bZ2))− 6XZ(2bXZ −X2 − 3Z2),
Y3 = (Y 2 − 3(2XZ − bZ2))(Y 2 + 3(2XZ − bZ2))

+ 3(3X2 − 3Z2)(2bXZ −X2 − 3Z2),
Z3 = 8Y 3Z.

In their paper, these formulas are implemented using 34 distinct operations
of which 8M+ 3S+ 2m+ 21a.1 These operations are listed—in SSA form—
in algorithm C.1 in appendix C. In this listing, every computation of vi
corresponds to the computation on line i in algorithm 6 of [57].

5.1.1 Batching multiplications

We will first look at how to batch the 11 multiplication and squaring opera-
tions in 4× vectorized algorithms. Because computing squarings is cheaper
than computing multiplications, it would be wonderful if we could man-
age to group all 3 squarings into one batched squaring operation, and all 8
multiplications into two batched multiplications.
We see, however, that this is not possible. Consider an approach putting
all 3 squarings into a single batch. Observe that from the multiplication
operations that are left, every value from {v14, v15, v26, v30, v32} depends on
at least one value from {v4, v6, v28} to be ready. In other words, the latter
group of values must be computed before the former group of values can
be computed. This means we are forced to use three batched multiplication
steps for the 8 multiplications along with the batched squaring.
Instead we opt to compute 3 batched multiplications, which include the
squaring operations. We found that the multiplications and squarings that

1Where M stands for multiplication, S for squaring, m for multiplication by a small
constant and a for addition/subtraction.
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result in the most structured dependency graph are when

batch 1 computes {v1, v3, v6, v28};
batch 2 computes {v2, v4, v26, v30}; and
batch 3 computes {v14, v15, v32}.

5.1.2 Eliminating chained additions

Apart from the assumption that register space is limited, the Renes-Costello-
Batina formulas also consider multiplications by small constants to be more
expensive than multiple additions. They have therefore opted to imple-
ment all multiplications by small constants (except for b) using additions
alone.
However, on our platform, the reciprocal throughputs of the vmulsd, vmulpd,
vaddsd, and vaddpd instructions are all 1 cycle. Thismeanswe can reduce the
amount of operations by replacing these chained additions bymultiplications
by their respective small constants. In the doubling formulas, we have
devised these new assignments:

New assignment Eliminated ops
v17 ← 3v3 v16
v22 ← 3v20 v21
v24 ← 3v1 v23
v34 ← 8v28 v33
v11 ← −6v′9, where v′9 ← v6 − b

2v3 v7, v10

After replacing 11 a-operations with 5 m-operations, the new cost of the
doubling formula is 8M+ 3S+ 7m+ 10a.
In the assembly implementation, many operations have been reordered for
better out-of-order execution. Furthermore, some operations—other than
multiplications and carries—are batched whenever this seemed beneficial.
Yet, the assembly code also adds a lot of shuffling operations, which will
add some performance overhead. The structure of the resulting assembly
code is given in Algorithm 5.1.
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Algorithm 5.1 Exception-free point doubling for Barreto’s curve, as imple-
mented by this work.
procedure Double(X , Y , Z) ▷ Compute (X3 : Y3 : Z3) = 2(X : Y : Z)

v2X ← X +X
v1 ← X ·X; v6 ← X · Z; v3 ← Z · Z; v28 ← Y · Z
Carry v1, v6, v3, v28
v24 ← 3 · v1; v18 ← 2b · v6; v′8 ← − b

2 · v3; v17 ← 3 · v3
v25 ← v24 − v17; v19 ← v18 − v17
v20 ← v1 − v19
v22 ← −3v20
v9 ← v′8 + v6
v11 ← −6 · v9; v34 ← 8 · v28
Carry v11, v34, v22, v25
v29 ← v28 + v28
v30 ← v22 · v29; v26 ← v22 · v25; v2 ← Y · Y ; v5 ← v2X · Y
Carry v30, v26, v2, v5
v12 ← v2 − v11
v13 ← v2 + v11
v32 ← v2 · v34; v15 ← v5 · v12; v14 ← v12 · v13
Carry v32, v15, v14
v31 ← v15 − v30
v27 ← v14 + v26

X3 ← v31
Y3 ← v27
Z3 ← v34

end procedure
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5.2 Addition

The Renes-Costello-Batina formulas for doubling a point on Barreto’s curve
are
X3 = (X1Y2 +X2Y1) (Y1Y2 + 3(X1Z2 +X2Z1 − bZ1Z2))

− 3(Y1Z2 + Y2Z1) (b(X1Z2 +X2Z1)−X1X2 − 3Z1Z2) ,
Y3 = 3(3X1X2 − 3Z1Z2) (b(X1Z2 +X2Z1)−X1X2 − 3Z1Z2)

+ (Y1Y2 − 3(X1Z2 +X2Z1 − bZ1Z2)) (Y1Y2 + 3(X1Z2 +X2Z1 − bZ1Z2)) ,
Z3 = (Y1Z2 + Y2Z1) (Y1Y2 − 3(X1Z2 +X2Z1 − bZ1Z2))

+ (X1Y2 +X2Y1)(3X1X2 − 3Z1Z2).

In [57, Algorithm 4], these formulas are implemented in 43 operations. The
cost of the original algorithm is 12M+ 2m+ 29a. The untouched algorithm
is listed in Algorithm C.2 in SSA form.

5.2.1 Batching multiplications

As in Section 5.1, we will compute the multiplications in batches of 4, using
our 4× vectorized implementation from Section 4.3.4.
We can group these multiplications using the same method as in Subsec-
tion 5.1.1, by looking at the dependency tree. The three groups of multipli-
cations that result in the most structured dependency graph are when

batch 1 computes {v1, v2, v2, v16};
batch 2 computes {v6, v11, v36, v37}; and
batch 3 computes {v35, v39, v41, v42}.

5.2.2 Eliminating chained additions

The formulas for addition contain fewer chained additions than the doubling
formulas. Nonetheless, they contain four of them, which we can eliminate
and replace by a single multiplication operation:

New assignment Eliminated ops
v22 ← 3v20 v21
v27 ← 3v3 v26
v31 ← 8v29 v30
v33 ← 3v1 v32

The substitutions replace 8 a-operations by 4 m-operations. This results in a
new cost of 12M+ 6m+ 21a.
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As with the code for doubling, some operations other than multiplications
and carries have been batched. In the same way, the assembly code of
the addition formula contains many shuffling operations, which will surely
impact the performance. The final code is resembled by Algorithm 5.2.
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Algorithm 5.2 Exception-free point addition for Barreto’s curve, as is has
been implemented by this work.
procedure Add(X1, Y1, Z1, X2, Y2, Z2)

▷ Compute (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2)

v4 ← X1 + Y1; v9 ← Y1 + Z1; v14 ← X1 + Z1

v5 ← X2 + Y2; v10 ← Y2 + Z2; v15 ← X2 + Z2

v1 ← X1 ·X2; v2 ← Y1 · Y2; v3 ← Z1 · Z2; v16 ← v14 · v15
Carry v1, v2, v3, v16
v17 ← v1 + v3
v18 ← v16 − v17
v19 ← b · v3
v20 ← v19 − v18
v25 ← b · v18
v27 ← 3 · v3
v28 ← v25 − v27
v29 ← v28 − v1; vv1−v3 ← v1 − v3
v22 ← 3 · v20; v31 ← 3 · v29; v34 ← 3 · vv1−v3

Carry v22, v31, v34
v23 ← v2 − v22
v24 ← v2 + v22
v6 ← v4 · v5; v11 ← v9 · v10; v36 ← v31 · v34; v37 ← v23 · v24
Carry v6, v11, v36, v37
v8 ← v6 − v7; v13 ← v11 − v12
v38 ← v36 + v37
v35 ← v13 · v31; v39 ← v8 · v24; v41 ← v13 · v23; v42 ← v8 · v33
Carry v35, v39, v41, v42
v43 ← v41 + v42
v40 ← v39 − v35

X3 ← v40
Y3 ← v38
Z3 ← v43

end procedure
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Chapter 6

Scalar multiplication

Let usmake the last step towards a complete variable-point scalar-multiplication
algorithm. First, we will select a suitable scalar-multiplication algorithm and
optimize it for our specific instance. In the end of this chapter, we will review
all the steps involved in the variable-point scalar multiplication.
For the scalar multiplication, we will use the left-to-right double-and-add
algorithm from Subsection 2.2.1. We will apply the fixed-window optimiza-
tion method from Subsection 2.2.3, with the key-digits recoded into signed
form, as described in Subsection 2.2.4.

6.1 Choosing w

To choose the window size w, we will use Equation 2.8 to optimize for the
window size that leaves us with the fewest amount of operations. Before-
hand, we do not yet know the load of the addition algorithm relative to
the doubling algorithm. An educated guess is that—because the doubling
formula needs less field additions—Dbl ≈ 0.9 · Add.1 In Table 6.1 the to-
tal amount of “addition costs”—i.e. the cost equivalent to some amount of
addition operations—are given for window sizes from 1 up to 9.
We see that in Table 6.1 the amount of operations becomes large whenever
w is small, because with a low w the algorithm approximates the double-
and-add algorithm with no fixed-window optimizations. When w is too
large, the amount of values precomputed in the lookup becomes so large
that too few of them will actually be used during the scalar multiplication.

1After micro-benchmarking the doubling and add algorithms from Listings 5.1 and 5.2 on
the Ivy Bridge microarchitecture, we see that the the doubling algorithm executes in about
1144 cycles, while the addition algorithm needs about 1232 cycles. Apparently, the algorithm
for point doubling is indeed about 10% faster than the algorithm for point doubling.
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Table 6.1: Amount of operations, equivalent to an addition, for window
sizes w from 0 to 9, where it is assumed that either double ≈ 1.0 · add, or
double ≈ 0.9 · add. The smallest values are highlighted in bold.

w double ≈ 1.0 · add double ≈ 0.9 · add
1 511.0 485.4
2 384.0 358.4
3 344.0 317.3
4 326.0 300.1
5 322.0 294.7
6 329.0 300.9
7 355.0 325.3
8 414.0 382.1
9 539.0 499.7

Furthermore, because the size of the lookup table is O(2w), we will spend
too many cycles scanning the lookup table.
A sweet spot is seen for the values w ∈ {4, 5, 6}, with the smallest value
for w = 5, which we will therefore choose for our implementation. Conse-
quently, we will be using a lookup table of 16 group elements. The amount
of operations needed will be

#ops = 8 · double+ 7 · add︸ ︷︷ ︸
precomputation

+255 · double+ 52 · add︸ ︷︷ ︸
loop

,

which adds up to 263 · double+ 59 · add operations in total.
Now that we have determined w, we can fill in all the parameters in algo-
rithm2.4. The result is algorithm6.1, which resembles the scalar-multiplication
algorithm that has been implemented for this thesis.

6.2 Overview of the complete algorithm

At this point we have visited many parts of the implementation of our
variable-point scalar-multiplication algorithm. We have seen the core rou-
tines, including the finite-field arithmetic, the algorithms for doubling and
addition, and the scalar multiplication. However, the scalar-multiplication
algorithm from Algorithm 6.1 alone does not constitute a complete and
secure variable-point scalar-multiplication algorithm. Some other steps, like
input validation and encoding R, still need to be done.
A description of the definitive function for variable-point scalar multiplica-
tion of points on Barreto’s curve is given by Algorithm 6.2. The steps that
are added in this algorithm are described in the rest of this section: lines 3

49



Algorithm 6.1 Signed double-and-add
1: function ScalarMultiplication(k, P ) ▷ Compute [k]P
2: T← (O, P, . . . , [16]P ) ▷ Precompute ([2]P, . . . , [16]P )
3: k′ ← RecodeSigned(Windows5(k))
4: R← O
5: for i from 50 down to 0 do
6: for j from 0 to 4 do
7: R← [2]R ▷ 5 doublings
8: end for
9: if k′i < 0 then
10: R← R−T−k′i

▷ Addition
11: else
12: R← R+Tk′i

▷ Addition
13: end if
14: end for
15: return R ▷ R = (XR : YR : ZR)
16: end function

and 9—about the encoding and decoding of points—are described in Sub-
section 6.2.1. Point validation on line 4 is described in Subsection 6.2.2. We
have already seen the scalar multiplication in line 7 in the previous section.
Lastly, in Subsection 6.2.3, we elaborate on the management of the MXCSR
register.

Algorithm 6.2 Complete variable-point scalar-multiplication algorithm
1: function VariablePointMultiplication(k, Pin) ▷ Compute R = [k]Pin
2: old mxcsr← ReplaceMXCSR(1F8016)
3: (XP , YP , ZP )← DecodeAffinePoint(Pin)
4: if not ValidPoint(XP , YP , ZP ) then
5: error
6: end if
7: (XR, YR, ZR)← ScalarMultiplication(k, (XP , YP , ZP ))
8: Rout ← EncodeProjectivePoint(XR, YR, ZR)
9: if not CheckMXCSR() then
10: error
11: end if
12: RestoreMXCSR(old mxcsr)
13: return
14: end function
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6.2.1 Point encoding

To operate on the point that is provided by the user, we have to decode it
first. The function DecodeAffinePoint(Pin) decodes the 64-byte string Pin
into the point P = (XP : YP : ZP ). Its first 32 bytes represent XP and the
last 32 bytes represent XP . Each part is interpreted as a 256-bit number in
big-endian order and recoded into 12 double floating-point limbs. ZP is set
to 1.
The point at infinity is represented by the full-zero string. That is, whenever
Pin = (0, . . . , 0), instead of decoding the invalid point (0 : 0 : 1), we set
P = (0 : 1 : 0).
EncodeProjectivePoint(XR, YR, ZR) encodes a projective point R = (XR :
YR : ZR) back to a byte string. It first computes the affine representation
of R. For the inversion of ZR we use the radix-251 inversion routine from
Sandy2x [21], which is based on the implementation of [9] and internally
computes Z−1

R = Z2255−21
R .2

Then we use Z−1
R to calculate the affine point by computing R = (xR, yR) =

(XRZ
−1
R , YRZ

−1
R ). Finally, we encode xR and yR back into a 64-byte string

using big-endian ordering.
Note that in the encoding of R, we have implicitly taken the point at infinity
into account. That is, because for all R = O, we know that ZR = 0. Because
of this, the computed value of Z−1

R = 02
255−21 = 0. Multiplying the other

coordinates ofR results in (xR, yR) = (XR ·0, YR ·0) = (0, 0). This is encoded
into the all-zero string, which encodes O.

6.2.2 Point validation

Before executing the scalar-multiplication algorithm on the input point,
we have to check whether the given point actually exists on the curve. In
ValidPoint(XR, YR, ZR), we will check if the coordinates of R are valid ac-
cording to the curve equation given in Equation 3.1. If the coordinates are
invalid, we will refuse to compute the scalar multiplication, and raise an
error instead.

6.2.3 The MXCSR control and status register

On Intel processors, the behavior of SIMD floating-point operations can be
configured using the “MXCSR Control and Status Register” [36, Section
10.2.3]. The MXCSR is a 32-bit register that contains fields for rounding

2Another option for inverting ZR is by using the method that was recently published
in [13]. However, because this method was not available when Sandy2x was implemented,
we believe it to be unfair to use it for our work.
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control, flag bits for floating-point exceptions and mask bits for floating-
point exceptions. Because our field-arithmetic implementation assumes a
specific behavior from the CPU, we must set the MXCSR before executing
any floating-point instruction.
First of all, we set the rounding control field to “Round to nearest (even)” [36,
Table 4-8]. Then, to prevent any side channels due to exceptions being raised,
we disable them by setting all the mask bits for floating-point exceptions to
1.3 Lastly, we set any other bits to their default value. This includes setting all
the exception flag bits to 0. The resulting value that we write to the MXCSR
is 1F8016.
At the end of the algorithm, we must clean up after ourselves and restore
the value of the MXCSR before returning. As a defense-in-depth measure,
we will also check whether any unexpected floating-point exceptions have
triggered, e.g. overflow, underflow, or divide-by-zero. If an unexpected
exception has occured, we refuse to return the result of our scalar multipli-
cation, and return an error instead.

3If we would not disable exceptions, the processor could—for example—be configured by
the caller to throw an exception whenever a rounding error occurs. This could be a disastrous
vulnerability, because our carry chain is based on triggering rounding errors. If the processor
throws an exception whenever a rounding error occurs, an attacker could use this as an oracle
to gain knowledge about the secret scalar.
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Chapter 7

Results and discussion

Our variable-point scalar-multiplication algorithm is completed, and now
we can compare the performance of Curve25519’s Sandy2x implementation
to ours. From our building blocks, we will first estimate how fast we expect
our implementation to be. Then we will decompose the results and look
at a profile of the individual building blocks. We will see which are the
bottlenecks of our algorithm, and consider how our algorithm could be
improved.

7.1 Performance expectations

There are two approaches through which we can estimate the performance
that we expect to achieve with our implementation. First, we will look at
similar implementations of variable-point scalar multiplication, i.e. for short
Weierstrass curves with a = −3. Secondly, we will estimate the lower bound
of the total amount of cycles that our implementation would take, building
up from the cycle counts that we have computed earlier in Chapter 4.

7.1.1 From other implementations

This work describes the first effort to write an optimized implementation
of the Renes-Costello-Batina addition formulas [57] in software.1 In their
work, they have substituted the complete formulas for OpenSSL’s original
formulas of the time, for the computation of variable-point scalar multipli-
cation on the NIST curves (which have a = −3). While they do not report
cycle counts, they do report that, for the NIST P-256 curve, their formulas
perform 1.38× slower. OpenSSL’s implementation is based on the incomplete

1At the time of writing, the only other optimized implementation of these addition for-
mulas has been [46], which implements the formulas in hardware.
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formulas from [6]. As such, Renes, Costello and Batina, argue that “the cost
of completeness” can be estimated to be around a factor of 1.38×.
Because in Barreto’s curve, b is small, it would be unfair to compare our
implementation with an implementation of a NIST curve. However, [14] has
examined the performance of a scalar-multiplication algorithm for a curve
similar to Barreto’s, i.e. one that uses a pseudo-Mersenne prime, has a = −3,
and has a small b. For their variable-point scalar-multiplication algorithm
(which they refer to as “w-256-mers”), they report a cycle count of 278kcc.
We multiply this by the factor 1.38 from [57], to get 384kcc as a first estimate
of the expected cycle count for our algorithm.
However, in Appendix C, the authors of [14] explicitly mention the consid-
eration of using complete addition formulas based on [15]. They claim that
the complete addition formulas would cost twice as much as the incomplete
formulas that they have used. Thereupon, we might even expect a cycle
count of 2 · 278kcc = 556kcc.

7.1.2 From building blocks

In Section 4.3 we have reported the theoretical lower bounds for the radix-
221.25 field-arithmetic operations. These are listed in Table 7.1. We can use
these lower bounds to calculate an expected lower bound for the cycle count
of the complete scalar-multiplication algorithm.

Table 7.1: Theoretical lower-bound reciprocal throughputs of finite-field
building blocks.

Operation Throughput−1

4× batched carry 60cc
4× batched multiply 131cc
4× batched multiply by small constant 12cc
4× batched addition/subtraction 12cc

In Algorithm 5.1, for doubling a point, we count 5 batched carries, 4 batched
multiplications, 3 batched multiplications by a small constant, and 9 batched
additions or subtractions. When we pile up these operations, we see that the
lower-bound reciprocal throughput of a doubling operation is

throughput−1
double = 5 · 60 + 4 · 131 + 3 · 12 + 9 · 12 = 968cc.

In the case of the addition formula from Algorithm 5.2, we count 5 batched
carries, 4 batched multiplications, 4 batched multiplications by a small con-
stant, and 13 batched additions. These operations pile up to a lower-bound
reciprocal throughput of

throughput−1
add = 5 · 60 + 4 · 131 + 4 · 12 + 13 · 12 = 1028cc.
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In Chapter 6, we have committed to a scalar-multiplication algorithm that
uses 263 double operations and 59 additions. This results in a theoretical
lower-bound reciprocal throughput of

throughput−1
scalarmult = 263 · 968 + 59 · 1028 = 315236cc.

Of course, this estimation is far from realistic. For one, it leaves out all the
overhead that comes from shuffling data, which is 288 instructions (23%
overhead) for doubling and 396 instructions (31% overhead) for addition.2
Second, the lower-bound estimate assumes that no data hazards occur at all.
Third, all access to memory is left out. Lastly, it only concerns the cost of the
doubling and addition routines. Some cost-heavy operations in the scalar-
multiplication algorithm are left out, like lookup-table scanning and the
inversion operation at the end. All in all, we estimate that an added overhead
of 20% should be considered in our lower bound in order to encompass the
complete variable-point scalar-multiplication algorithm. This leads to a
rough estimate of about 378kcc.
We see that the calculated estimate is consistent with the estimations derived
from the literature in Subsection 7.1.1. Although, the new estimate suggests
that the claim from [14]—that the cost of completeness is a factor 2—is
somewhat pessimistic.

7.2 Results

The complete algorithm was tested and benchmarked on Sandy Bridge3,
Ivy Bridge4, and Haswell5 machines. All measurements were done with
Turbo Boost disabled, all Hyper-Threading cores shut down, and with the
CPU clocked at the maximum frequency. A more detailed description of the
benchmarking setup can be found in Appendix D.

Table 7.2: Measured cycle counts of the variable-base-point scalar-
multiplication routines from Sandy2x and this work.

Implementation Sandy Bridge Ivy Bridge Haswell
Sandy2x [21] 159kcc 157kcc –
this work 390kcc 383kcc 340kcc

On Sandy Bridge, we have measured a cycle count of 390kcc. Hence we have
found the answer to our question what the cost of a Weierstrass curve with
complete formulas is, over Curve25519: It is around a factor 2.5.

2These instruction counts include blend and broadcast operations.
3Model: Intel Core-i7-2600
4Model: Intel Core-i5 3210M
5Model: Intel Core-i7 4770K
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We see that the measured cycle count is close to our estimates. We profiled
the complete implementation to see which parts of the algorithm were costly.
The results are displayed in Table 7.3.6

Table 7.3: Cycle counts of the different parts of our scalar-multiplication
algorithm (measured on the Ivy Bridge machine).

Part Cycles Percentage
point doubling 275732 72.0%
point addition 61940 16.2%
precomputation 19412 5.1%
inversion 14144 3.7%
lookup-table scanning 10088 2.6%
other 1522 0.4%

The doublings and additions, including the computation of the lookup ta-
ble, account for 357.1kcc (93.3%). In other words, we see that the actual
throughput of the doubling and addition routines is 13.3% slower than the
theoretical lower bound. This difference can be attributed to the shuffling
operations that have been added in the implementations of the addition
formulas.

7.3 Discussion

7.3.1 Performance

After implementing the variable-base-point scalar-multiplication algorithm
for Barreto’s curve, we see that the complete addition formulas perform
considerably slower than Curve25519. However, this result is not surprising,
given the fact that the Renes-Costello-Batina formulas need considerably
more operations.
While a factor of 2.5 slowdownmay seemdramatic, in the context of software—
depending on the application—it may be barely noticeable. Moreover, the
Renes-Costello-Batina formulas are applicable to any elliptic curve, including
Curve25519. Thus, the Renes-Costello-Batina formulas can always be used if
the implementor aims to unify different cryptographic implementations, for
example to reduce the code size. Such an implementation would need to add
functionality for transforming point Curve25519 and isomorphic Weierstrass
curve.

6In our code, the parts of the algorithm cannot be easily profiled using profiling tools,
because most functions are manually inlined. Therefore we have chosen to construct the
profilemanually. The cycle counts are obtained by running the implementation, while skipping
some part of it. We then subtract the measured cycle count from the baseline measurement,
i.e. the cycle count of the complete algorithm (382838cc).
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7.3.2 The cost of completeness

Another interesting observation is the measurement of the “cost of com-
pleteness” for Weierstrass curves. As we mentioned in Subsection 7.1.1, [57]
reported the overhead of the Renes-Costello-Batina formulas to be 1.38×. On
the other hand, [14] reported the overhead to be around a factor 2. However,
if we use their implementation—that uses incomplete formulas—as a basis,
we can make a new estimation of the overhead of the complete formulas.
When we divide our cycle count 390kcc by their cycle count 278kcc, we get
a factor of 1.40. We observe that this factor lies close to the factor reported
by [57]. Therefore, we conclude that the estimate from [14], which reports a
factor 2, is too pessimistic.
In the end, we recommend every implementor to use the complete addi-
tion formulas, when they need to implement arithmetic over Weierstrass
curves. The overhead of the Renes-Costello-Batina formulas is small, and
they prevent any exceptions from occurring in scalar-multiplication algo-
rithms.

7.3.3 Design choices

When reflecting on our results, we make two observations. First of all, we
see that the batched carry chain is relatively expensive. This results from the
fact that—contrary to the other building blocks in our algorithm—the carry
chain is mainly dominated by instruction latency, instead of throughput.
Sandy2x’s carry chain is fast, because most instructions on integers execute
in a single cycle. However, our implementation uses only the floating-point
instructions vaddpd and vsubpd, which need 3 cycles to finish. Another factor
is that the Sandy2x carry chain uses the CPU ports 0, 1 and 5 simultaneously,
while ours can only use port 1.
Another downside to using floating-point representation for large integers,
instead of integers is the overhead that is added due to shuffling. On Sandy
Bridge, packing and unpacking all values from a 4x vectorized ymmX-register
costs 3 µops on port 5. For xmmX-registers, these packing operations cost only
one µop.
With this new knowledge, we are unsure whether the use of radix 221.25

using floating-point numbers has been the correct choice for the Sandy
Bridge microarchitecture. Regardless, Intel has introduced 4× vectorized
64-bit integer arithmetic and more powerful shuffling instructions in AVX2,
which is included in the Haswell microarchitecture. Using AVX2, we can
implement the finite-field arithmetic in radix 225.5 using integer arithmetic,
while still using the same code for doubling and addition. This will greatly
improve the performance of the carry chain, and reduce the overhead from
shuffling.
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7.3.4 Future work

From this results of this work, we are only able to directly gather knowledge
on the performance of traditional Weierstrass curves with a = −3. While we
can generalize the results from this work onto other curves, these generaliza-
tions will undoubtedly be inaccurate. Therefore, we suggest implementing
the Renes-Costello-Batina formulas for more prime order curves than just
Barreto’s—for example BN-curves [4]—to see how the complete addition
formulas perform in these cases.
Apart from the implementation of other curves, the implementation on
other platforms should be considered. For instance, after Sandy Bridge,
Intel has released numerous newer microarchitectures with more powerful
instruction sets. For the sake of more data points, we can adapt our imple-
mentation to the Haswell microarchitecture and compare the performance
to [27], which is currently the fastest implementation of Curve25519 for that
microarchitecture.
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Chapter 8

Conclusion

In this thesis we have implemented an optimized algorithm for variable-
base-point scalar multiplication for Barreto’s curve on the Sandy Bridge
microarchitecture. On Sandy Bridge, an execution of our algorithm needs
about 390 thousand cycles. This is a factor 2.5 slower than Sandy2x, the fastest
implementation of scalar-multiplication algorithm for Curve25519.
We conclude that scalar multiplication using complete addition formulas is
indeed considerably slower for Weierstrass curves than it is for Curve25519.
Furthermore, we see that the general overhead of the Renes-Costello-Batina
formulas for arithmetic on Weierstrass curves is about a factor of 1.4.
The complete addition formulas can be used to implement efficient scalar
multiplication on other elliptic curves. Their overhead is small, and they
allow for safe arithmetic on Weierstrass curves. However, when a new
cryptographic protocol demands for a prime-order curve, it is preferred to
use Curve25519 in combination with Ristretto instead.
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Appendix A

Instruction glossary

The tables on the next page contain general information about the instruc-
tions that arementioned in this thesis. An instruction’s operands can be:

• xmm for a 128-bit register,
• ymm for a 256-bit register, or
• mX for an X-bit memory location.

The µops column separates different µops with a comma. If a µop can be
executed on different ports A and B, it is listed as pAB. Whenever a + is listed
beside a µop, this means that this µop takes 2 cycles to execute.
The latencies in this table do not take cache latency into account, i.e. they
only count the execution of the µops. Furthermore, when an instruction
micro-fuses a separate arithmetic and load instruction, the latency is omitted.
One can regard these micro-fused instructions as a separate arithmetic and
load instruction.
Lastly, note that the throughput is listed in a reciprocal unit, i.e. cycles per
instruction.
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Table A.1: Integer arithmetic

mnemonic operands µops latency throughput−1

vmovdqa xmm, m128 p23 3 0.5
vmovdqa m128, xmm p23, p4 3 1
vp{and,or} xmm, xmm p015 1 0.5
vp{and,or} xmm, m128 p015, p23 0.5
vps{l,r}lq xmm, i p0 1 1
vp{add,sub}q xmm, xmm p15 1 0.5
vp{add,sub}q xmm, m128 p15, p23 0.5
vpmuludq xmm, xmm p0 5 1
vpmuludq xmm, m128 p0, 23 1

Table A.2: Floating point arithmetic

mnemonic operands µops latency throughput−1

vmovapd ymm, m256 p23+ 4 1
vmovapd m256, ymm p23, p4+ 4 2
v{and,or}pd ymm, ymm p015, p5, p4+ 1 1
v{and,or}pd ymm, m256 p015, p5, p23+ 1
v{add,sub}pd ymm, ymm p1 3 1
v{add,sub}pd ymm, m256 p1, p23+ 1
vmulpd ymm, ymm p0 5 1
vmulpd ymm, m256 p0, p23+ 1
vandpd ymm, ymm p5 1 1
vandpd ymm, m256 p5, p23+ 1
{add,sub}sd xmm, xmm p1 3 1
{add,sub}sd xmm, m264 p1, p23 1
vmulsd xmm, xmm p0 5 1
vmulsd xmm, m64 p0, p23 1
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Appendix B

Curve verification with Sage

The Sage Mathematics Software System [62] was used to verify Barreto’s
curve. The script that was used is listed in Listing 6.

Listing 6: Curve13318.sage
#!/usr/bin/env sage

# *-* encoding: utf-8 *-*

"""

Find a value `b` for the curve `E : y^2 = x^3 - 3x + b` s.t.

the curve has a prime order and its twist also has a prime order.

"""

from itertools import chain, count

F = GF(2^255 - 19)

def plusmin(it):

for x in it:

yield x

yield -x

for i,b in enumerate(plusmin(count())):

percents = int(100.0 * i / float(2*13318))

print('[% 3d%%] b = % 6d' % (percents, b))

try:

E = EllipticCurve(F, [-3, b])

except ArithmeticError:

continue # Curve has a singularity

n = E.order()

# Only accept curves of prime order
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if not is_prime(n):

continue

# Only accept if the twist is also of prime order

twist = E.quadratic_twist()

if not is_prime(twist.order()):

continue

bits = int(log(float(E.order()))/log(2.0))

print('')

print('Found a good curve E : y^2 = x^3 - 3x + {}'.format(b))

# Start selecting random points for the rest of the search to find G

for x in plusmin(range(0, 256)):

for y in range(256):

try:

G = E(x, y)

except TypeError: # (x, y) is not a valid point

continue

print(' - G = {}'.format(G))

break
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Appendix C

Renes-Costello-Batina addition
formulas
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Algorithm C.1 Exception-free point doubling formula for Barreto’s curve, as
described by [57, Algorithm 6], transcribed into SSA form. Each value vi is
computed on the corresponding line i in Algorithm 6 from [57].

procedure Double(X , Y , Z) ▷ Compute (X3 : Y3 : Z3) = 2(X : Y : Z)
v1 ← X ·X
v2 ← Y · Y
v3 ← Z · Z
v4 ← X · Y
v5 ← v4 + v4
v6 ← X · Z
v7 ← v6 + v6
v8 ← b · v3
v9 ← v8 − v7
v10 ← v9 + v9
v11 ← v10 + v9
v12 ← v2 − v11
v13 ← v2 + v11
v14 ← v12 · v13
v15 ← v12 · v5
v16 ← v3 + v3
v17 ← v3 + v16
v18 ← b · v7
v19 ← v18 − v17
v20 ← v19 − v1
v21 ← v20 + v20
v22 ← v20 + v21
v23 ← v1 + v1
v24 ← v23 + v1
v25 ← v24 − v17
v26 ← v25 · v22
v27 ← v14 + v26
v28 ← Y · Z
v29 ← v28 + v28
v30 ← v29 · v22
v31 ← v15 − v30
v32 ← v29 · v2
v33 ← v32 + v32
v34 ← v33 + v33

X3 ← v31
Y3 ← v27
Z3 ← v34

end procedure
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Algorithm C.2 Exception-free point addition formula for Barreto’s curve, as
described by [57, Algorithm 4], transcribed into SSA form. Each value vi is
computed on the corresponding line i in Algorithm 4 from [57].

procedure Add(X1, Y1, Z1, X2, Y2, Z2)
▷ Compute (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2)

v1 ← X1 ·X2

v2 ← Y1 · Y2

v3 ← Z1 · Z2

v4 ← X1 + Y1

v5 ← X2 + Y2

v6 ← v4 · v5
v7 ← v1 + v2
v8 ← v6 − v7
v9 ← Y1 + Z1

v10 ← Y2 + Z2

v11 ← v9 · v10
v12 ← v2 + v3
v13 ← v11 − v12
v14 ← X1 + Z1

v15 ← X2 + Z2

v16 ← v14 · v15
v17 ← v1 + v3
v18 ← v16 − v17
v19 ← b · v3
v20 ← v18 − v19
v21 ← v20 + v20
v22 ← v20 + v21
v23 ← v2 − v22
v24 ← v2 + v22
v25 ← b · v18
v26 ← v3 + v3
v27 ← v26 + v3
v28 ← v25 − v27
v29 ← v28 − v1
v30 ← v29 + v29
v31 ← v30 + v29
v32 ← v1 + v1
v33 ← v32 + v1
v34 ← v33 − v27
v35 ← v13 · v31
v36 ← v34 · v31
v37 ← v24 · v23
v38 ← v37 + v36
v39 ← v24 · v8
v40 ← v39 − v35
v41 ← v23 · v13
v42 ← v8 · v34
v43 ← v41 + v42

X3 ← v40
Y3 ← v38
Z3 ← v43

end procedure
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Appendix D

Benchmarking setup

This thesis has used two different approaches for benchmarking pieces of
code. Section D.1 concerns the benchmarking of long, complete algorithms.
This includes the cycle counts measured for Table 7.2. The other method—
described by Section D.2—applies to smaller snippets of code.
Allmeasurementswere donewith TurboBoost disabled, allHyper-Threading
cores shut down, andwith theCPU clocked at themaximum frequency.
The code for this work is published at https://github.com/dsprenkels/
curve13318. A brief manual with information on how to reproduce the
results is included.
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D.1 Macro-benchmarks

To get accurate measurements of a complete run of the scalar-multiplication
algorithm, we used the Intel rdtsc instruction. We measured the median of
the calling overhead to be 58 cycles. This “blank” measurement is subtracted
from every trail. For every measurement, we did 1000 trials and reported
the median value.

Listing 7: Benchmarking large chunks of code.
#include <inttypes.h>

#include <stdio.h>

#include <assert.h>

extern int

crypto_scalarmult_curve13318_scalarmult(uint8_t*, const uint8_t*, const uint8_t*);

static __inline__ unsigned long long

rdtsc(void)

{

unsigned hi, lo;

__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));

return ( (unsigned long long)lo)|( ((unsigned long long)hi)<<32 );

}

int

main(int argc, char *argv[])

{

unsigned long long start, diff, blank = 58;

uint8_t out[64] = {0};

const uint8_t key[32] = {1};

const uint8_t in[64] = {

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

179, 43, 106, 247, 206, 176, 201, 77, 137, 224, 122, 176, 76, 93, 29, 69,

190, 137, 17, 103, 105, 172, 236, 172, 225, 72, 243, 7, 94, 128, 240, 17

};

for (unsigned int i = 0; i < 1000; i++) {

start = rdtsc();

int ret = crypto_scalarmult_curve13318_scalarmult(out, key, in);

diff = rdtsc() - start - blank;

printf("%llu\n", diff);

}

return 0;

}
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D.2 Micro-benchmarks

A separate benchmarking method was used for smaller snippets of code,
when the overhead of a function call would impact the accuracy of a mea-
surement. This method has been used to measure small building blocks of
the scalar-multiplication algorithm, like field multiplication, point doubling,
etc.
The micro-benchmarks were constructed using the macros from Listing 8.
Every benchmark is surrounded by bench prologue and bench epilogue.
These snippets execute rdtsc to read the CPU time-stamp counter value
before and after the call to the benchmark. Moveover, the mfence instruction
in bench prologuemakes sure no out-of-order execution of benchmark code
is started during the execution of the prologue; the mfence instruction in
bench epilogue makes sure that all instructions from the benchmark are
retired before saving the new RDTSC value.
Intel also recommends to add lfence instructions before the execution of
the rdtsc instruction, in order to serialize the instruction stream. We found,
however, that this tweak was not needed to get consistent measurements in
our case.
Lastly, the label bench blank holds the code for the empty benchmark. The
empty benchmarkmeasures the overhead of the benchmark framework itself.
For each benchmark, the overhead is subtracted from the measured cycle
count to get the cycle count of the actual benchmark body.
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Listing 8: Macros for benchmarking small chunks of code.
; Macros for constructing benchmarks

%ifndef BENCH_ASM_

%define BENCH_ASM_

section .text

global _bench_blank, _bench_fns, _bench_names, _bench_fns_n

%macro bench_prologue 0

push rbx

push r12

push r13

push r14

push r15

vzeroupper

rdtsc

push rax

push rbp

mov rbp, rsp

and rsp, -32

mfence

%endmacro

%macro bench_epilogue 0

mfence

rdtsc

mov rsp, rbp

pop rbp

pop rdx

sub rax, rdx

vzeroupper

pop r15

pop r14

pop r13

pop r12

pop rbx

%endmacro

_bench_blank:

bench_prologue

bench_epilogue

ret

%endif
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