
Assembly or Optimized C for Lightweight
Cryptography on RISC-V?

Fabio Campos1, Lars Jellema2, Mauk Lemmen2, Lars Müller1, Daan
Sprenkels2, and Benoit Viguier2 ?

1 RheinMain University of Applied Sciences, Wiesbaden, Germany
campos@sopmac.de, mail@lars-mueller.com

2 ICIS, Radboud University, Nijmegen, The Netherlands
M.Lemmen@student.ru.nl
lars.jellema@gmail.com
daan@dsprenkels.com
b.viguier@cs.ru.nl

Abstract. Amajor challenge when applying cryptography on constrained
environments is the trade-off between performance and security. In this
work, we analyzed different strategies for the optimization of several can-
didates of NIST’s lightweight cryptography standardization project on
a RISC-V architecture. In particular, we studied the general impact of
optimizing symmetric-key algorithms in assembly and in plain C. Fur-
thermore, we present optimized implementations, achieving a speed-up
of up to 81% over available implementations, and discuss general imple-
mentation strategies.

Keywords: RISC-V · lightweight cryptography · software optimization
· NIST.

1 Introduction

The enormous growth of the "Internet of Things" (IoT) is changing the world.
Forecasts [30] project the number of interconnected embedded devices to around
50 billion worldwide by 2030, a five-fold increase in the next ten years. Driven
by the lack of cryptographic algorithms which are more suitable for such con-
strained environments, NIST started in 2015 a project1 (NIST-LWC) to solicit,
evaluate, and eventually standardize lightweight authenticated encryption algo-
rithms with associated data (AEAD) and hashing. In August 2019, NIST selected
32 candidates for round 2, which is expected to last one year. Lightweight cryp-
tography (LWC), a sub-field of cryptography, covers cryptographic algorithms
intended for use in constrained hardware and software environments. The main
? Author list in alphabetical order; see https://www.ams.org/profession/leaders/
culture/CultureStatement04.pdf. This work was supported in part by Continental
AG; Elektrobit Automotive GmbH; and the European Commission through the ERC
Starting Grant 805031 (EPOQUE). Date: December 6, 2020

1 https://csrc.nist.gov/Projects/lightweight-cryptography

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://csrc.nist.gov/Projects/lightweight-cryptography

2 F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, B. Viguier

goal of NIST’s project is to provide algorithms that are more suitable for use
on constrained devices where the performance of current NIST cryptographic
standards is not acceptable. Thereby, performance figures should be considered
on a wide range of 8-bit, 16-bit and 32-bit microcontroller architectures.

On the hardware side, we are facing challenges where critical vulnerabilities
([27,29]) cannot be tracked back due to the lack of transparency. The RISC-V
project, with roots in academia and research (University of California, Berkeley),
has initiated a fundamental shift in the technical and business models for micro-
processors. RISC-V [36], a royalty-free and open-source reduced instruction-set
architecture (ISA), provides a competitive advantage and the required degree
of flexibility to develop secure microprocessors with addresses of 32-, 64-, and
128-bits in length.

Contribution of this paper. This paper aims at comparing optimization at
different levels of round-2 NIST lightweight candidates algorithms on a RISC-V
architecture. To achieve this, we first present optimized RISC-V implementations
of several cryptographic algorithms. Further, we study the impact of implement-
ing these primitives on RISC-V in assembly compared to in C. Based on this,
general implementation strategies are derived and discussed.

Related work. Many aspects regarding the optimization of lightweight crypto-
graphic algorithms have been studied in the literature. In [31], generic security,
efficiency, and some considerations for cryptographic design of lightweight con-
structions were explored. Cruz, Reis, Aranha, López, and Patil [17] discussed
techniques for efficient and secure implementations of lightweight encryption on
ARM devices. The modular and reusable architecture of RISC-V facilitates a
variety of designs for the implementation of accelerators, ranging from loosely
[35] to tightly coupled designs [2,25]. However, only few works focused on the op-
timization of cryptographic algorithms on the standard RISC-V instruction set.
Stoffelen [34] presented the first optimized assembly implementations of AES,
ChaCha, and the Keccak-f [1600] permutation for the RISC-V instruction
set. In [32] the 32 second round finalists from the NIST-LWC were evaluated on
RISC-V without further optimization.

Organization of this paper. This paper is structured as follows. Section 2 pro-
vides background information on the RISC-V 32-bit architecture and instruction
set. We also give the necessary background on the platforms used for bench-
marking. In Section 3, we briefly recall the selected algorithms and present our
optimization strategies, before we describe the benchmarking setup and discuss
the achieved results in Section 4. Finally, in Section 5, we conclude the paper.

Availability of implementations. We place all software and hardware imple-
mentations described in this paper into the public domain to maximize reusabil-
ity of our results. They are available at https://github.com/AsmOptC-RiscV/
Assembly-Optimized-C-RiscV.

https://github.com/AsmOptC-RiscV/Assembly-Optimized-C-RiscV
https://github.com/AsmOptC-RiscV/Assembly-Optimized-C-RiscV

Assembly or Optimized C for Lightweight Cryptography on RISC-V? 3

2 RISC-V

In Section 2.1 we describe in more details the RISC-V 32-bit architecture before
detailing the associated instruction set (Section 2.2). We then discuss different
approaches to execute code targeting RISC-V platform (Section 2.3).

2.1 Architecture

The RISC-V architecture uses 32 32-bit registers numbered from x0 through
x31. To ease their use, they also have aliases. zero (x0) is hard-wired to the
value 0; ra (x1) corresponds to the return address; sp (x2) to the stack pointer;
gp (x3) to the global pointer; tp (x4) to the thread pointer. a0-a7 (x10-x17) are
function arguments with a0 and a1 also functioning as return values. s0-s11 (x8-
x9, x18-x27) are saved registers. Finally, t0-t6 (x5-x7, x28-x31) are temporary
registers.

The caller has the responsibility for the saved registers s0-s11 while the callee
is able to freely modify the arguments (a0-a7) and temporary registers (t0-t6).

Excluding the zero, ra, sp, gp, and tp registers, we are left with 27 freely
usable 32-bit registers. This is twice of what is available in the Cortex-M3 and
Cortex-M4 architectures; and it enables us to easily take care of register alloca-
tion.

2.2 Instruction set

The RISC-V base instruction set contains a small number of instructions which
we briefly describe here.

Bitwise and arithmetic instructions such as add, addi, and, andi, or, ori,
sub, xor, xori take three register operands, or if postfixed by i, two registers
and one 12-bit sign-extended immediate.

We soon notice missing instructions. e.g., mov rd, rs is implemented by
taking advantage of the zero register as add rd, zero, rs. Similarly, the two’s
complement negation neg rd, rs is replaced by sub rd, zero, rs and the
one’s complement negation not rd, rs as xori rd, rs, -1. Subtract imme-
diate (subi) is written as addi with a negative immediate.

The base ISA does not provide rotation instructions but logical and arith-
metic shifts: sll, slli, srl, srli, sra, and srai. Those instructions are read
as shift [left|right] [logical|arithmetic].

Load of constants is done with two instructions: lui and addi. Load upper
immediate lui takes a 20 bit unsigned immediate and places it in the upper 20
bits of the destination register. The lowest 12 bits are filled with zeros.

.equ UART_BASE, 0x40003000

lui a0, %hi(UART_BASE)
addi a0, a0, %lo(UART_BASE)

4 F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, B. Viguier

In order to load words, half-words (unsigned), or bytes (unsigned) from mem-
ory, the instructions lw, lh, lhu, lb, lbu are used. Similarly sw, sh, shu, sb, sbu
are available to store values into the memory. For example lw a5, 8(a2) will
load into a5 the word located at address a2 + 8. Note that the offset has to
be a constant. Additionally loads and stores of words have to be 32-bit aligned,
e.g., lw a5, 3(a2) will fail.

Text labels are used as targets for branches, unconditional jumps and symbol
offsets. They are added to the symbol table of the compiled module. Numeric
labels are used for local references. When used in jumps and similar instructions,
they are suffixed with ‘f’ for a forward reference or ‘b’ for a backwards reference.

loop:
...
j loop

j func
...

fun:

1:
...
j 1b

j 2f
...

2:

In addition to the jal and jalr unconditional jump –relative to the program
counter or as an absolute address in a register– the instruction beq, blt, bltu,
bge, bgeu are used for conditional jumps. They take three arguments, the first
two are used in the comparison while the third one is the destination –label–
encoded later as an offset relative to the program counter.

To perform our benchmarks we use the csrr instruction (control and status
register) to read the 64-bit cycle-counter. On the RV32I architecture, it is split
into two 32-bit words (cycle and cycleh).

2.3 Executing code

To write optimized code for a specific architecture, we need ways to measure
improvements or regressions. Below, we describe 3 test platforms which allowed
us to benchmark our code.

SiFive E31 core. We use a HiFive1 development board. They are easily avail-
able and contain the FE310-G000 SoC with an E31 core. The CPU implements
the RV32IMAC instruction set. This corresponds to the RV32I base ISA with the
extensions for multiplications, atomic instructions and compressed instructions.

It has to be noted that RISC-V does not specify how many cycles an instruc-
tion may take or the kind of memory used. As a result benchmarks between
different RISC-V cores have to be carefully compared.

The E31 runs at 320+ MHz and uses a 5-stage single-issue in-order pipeline.
Additionally it uses a 16KB, 2-way instruction cache. Fetching an instruction
from the cache takes only 1 cycle. Most instruction execution takes 1 cycle with a
few exceptions. For example, if there is a cache hit, load word (lw) takes 2 cycles,
loads of half word (lh) and bytes (lb) a 3-cycle latency. In the case of a cache
miss, the latency is highly dependent on the flash controller’s clock frequency.
To prevent such unpredictability, we fill up the cache before any benchmarks.

Assembly or Optimized C for Lightweight Cryptography on RISC-V? 5

The E31 comes with a 1-cycle latency branch predictor. It uses a 28-entry
branch target buffer (BTB), a 512-entry branch history table (BHT) for the
direction of conditional branches, and a 6-entry return-address stack (RAS). A
correctly predicted control-flow instruction results in no penalty while mispre-
dictions incur a 3-cycle penalty.

The RISC-V specification requires a 64-bit cycle counter accessible via two
CSR registers which we will use to benchmark code. Occasionally measurements
may end up taking much longer than expected, we ignore these odd values.

VexRiscv simulator. VexRiscv is a 32-bit RISC-V CPU implementation writ-
ten in SpinalHDL. Although it is possible to load the core onto an FPGA; we use
the Verilator simulator to emulate a core and flash binaries to it. This process
allows us to have cycle counts and to evaluate how each algorithm is performing.

The core features the RV32IM instruction set. This corresponds to the base
ISA with the extension for multiplications. We initialize the simulator with 256
KiB of RAM and 128 KB of sRAM.

Similarly to the E31 core, the VexRiscv makes use of a 5-stage pipeline.
The absence of a branch predictor and an instruction cache give a significant
advantage to algorithms which have been unrolled either by hand or the com-
piler. This explains major cycle-counts differences in the execution of different
implementations of a same algorithm.

riscvOVPsim simulator. Finally, as opposed to executing code on a board or
on a fully simulated core, we use the Open Virtual Platforms developed by Im-
peras Software, Ltd. Their RISC-V simulator uses Just-in-Time Code Morphing
and executes RISC-V code on a Linux or Windows host computer.

This simulator implements the full Instruction Set and permits us to enable
or disable specific extensions such as Vector instructions or Bit manipulations.
The B extension gives us access to more advanced instructions such as rotations
(rori, roli), packing (pack, packu), and many others.

Unfortunately, this approach simulates neither pipeline nor cache. While it
allows us to execute RISC-V binary files, the results may be biased towards
some optimization practices, leading to significant differences between imple-
mentations as shown in our benchmarks (see Section 4).

3 Optimized Algorithms

Optimized cryptographic implementation are usually written directly in assem-
bly with the idea to prevent the compiler from introducing bugs or weaknesses.
By making sure we do not branch on secret data and considering the small size
of the RISC-V ISA, we trust the compiler to match our implementations.

We call “Optimized C” the translation of an assembly implementation back
into C, making use of uint32_t such that the C code mimics the assembly
instructions. The underlying idea is to have the compiler further optimize our
code and take care of the register allocation.

We now describe the algorithms we optimized and some of the implementa-
tion strategies we used.

6 F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, B. Viguier

3.1 Gimli

Gimli [7] is a lightweight scheme proposed by Bernstein, Kölbl, Lucks, Massolino,
Mendel, Nawaz, Schneider, Schwabe, Standaert, Todo, and Viguier. It makes use
of a sponge construction and is based on a 384-bit permutation. Its design puts
an emphasis on cross-platform performance and simplicity. The code is compact
and uses only logical operations and shifts. The absence of additions allows to
“interleave” implementations for platform with different register size than 32 bits.
An implementation for RISC-V-64 with the B extension would likely be using
such strategy.

The permutation. The 24-round permutation operates on a 384-bit state seen
as a 3 × 4 matrix of 32-bit words. Gimli works first locally on the four 96-bit
columns; and, to ensure diffusion through the full state, a 2-word swap is applied
on the upper 128-bit row of the state every 2 rounds. The symmetries in the state
are broken by the addition of an incrementing round constant every 4 rounds.

Using a sponge construction [9], the designers created two variations: a hash
function Gimli-Hash and an authenticated cipher Gimli-Cipher.

Gimli-Hash and Gimli-Cipher. Gimli-Hash initializes a 48-byte state
to all-zero before reading sequentially through a variable-length input as a series
of 16-byte input blocks. Each full 16-byte input block is absorbed into the state.
The final non-full (empty or partial) block is padded with a byte 0x01 before
its absorption while a domain separation byte 0x01 is XORed in the last byte
(47th) of the state. The 32-byte digest output is extracted by blocks of 16-bytes.
Each absorption or extraction of blocks is interweaved with calls to the Gimli
permutation.

After initializing the state with a nonce and a key, Gimli-Cipher processes
the additional data in the same way as Gimli-Hash. The message is processed
in a similar fashion with the exception that after each absorption of a block, the
modified first 16 bytes of the state are produced as cipher text. Once the last
non-full block is processed; the 16-byte authentication tag is generated from the
first 16 bytes of the state.

We are able to get speed-ups on both Gimli-Hash and Gimli-Cipher by
optimizing the underlying permutation Gimli. We rescheduled the order of in-
structions to avoid swap operations.

Bounds and optimizations. We optimize Gimli by first having a deeper look
at the inner permutation and by computing the lower bound of the number
of cycles used. Gimli’s state representation uses twelve 32-bit words which are
easily contained in the 27 general-use 32-bit registers. [7] shows that only 2
additional registers are required in order to compute the column operations; as
a result, in a fully unrolled implementation, the only cycles necessary in the
computation are the ones required by the logical operations.

Gimli uses 2 rotations, 6 XORs, 2 ANDs, 1 OR, and 4 shifts. All logical
operations have a latency of 1 cycle, except for rotates which have a 3-cycle
latency. A column operation requires thus 19 cycles; iterated over 4 columns and
24 rounds, this totals to 1824 cycles.

Assembly or Optimized C for Lightweight Cryptography on RISC-V? 7

Gimli uses 6 constants (loaded in 2 cycles) derived every 4 rounds (an ad-
ditional 5 cycles) before being XORed into the state (6 XORs, thus 6 cycles).
When the permutation is not directly inlined and used as a function, it requires
12 loads and 12 stores to get the state into registers for an additional 48 cycles.
Excluding the cycles needed to preserve some of the callee registers, we have a
total of 1885 cycles.

As a base line, the reference C code runs at 2178 cycles. By using careful
scheduling of the instructions, and using a minimum number of register – saving
into the stack only 4 callee–, our assembly implementation runs at 2092 cycles.
The Optimized C version runs in 2132 cycles. This timing difference is explained
by the compiler’s use of the 12 callee registers, inducing a 40-cycle penalty.

By unrolling in C –the same approach could have been applied in assembly–
over 8 rounds and propagating the swapping by renaming variable to avoid move
operations, the compiler manages to achieve further speed-ups by getting down
to 1900 cycles. Using this last implementation, we get a 19% speed-up for Gimli-
Hash and Gimli-Cipher (Table 1).

Table 1. Cycle counts for different Gimli implementations on the SiFive board;
Gimli-Hash over 128 bytes of data, Gimli-Cipher over a 128 bytes message with 128
bytes of associated data. Compiled with Clang-10 and -O3

C-ref Assembly Optimized C 8-round
Optimized C

Gimli 2178 2092 (−4%) 2132 (−2%) 1900 (−13%)
Gimli-Hash 23120 20812 (−10%) 21055 (−9%) 18678 (−19%)

Gimli-Cipher 44423 39583 (−10%) 40816 (−8%) 35853 (−19%)

3.2 Sparkle

Sparkle [4] is a family of cryptographic permutations based on the block cipher
Sparx [22]. Schwaemm (an AEAD cipher scheme) and Esch (a hash function)
follow a not hermetic design approach, and share Sparkle as the underlying
permutation. The Sparkle permutation is a classic ARX design, which, unlike
most ARX constructions, provides security guarantees with regard to differential
and linear cryptanalysis based on the long trail strategy (LTS) [22]. Schwaemm
and Esch work on a relatively small state, which is only 256 bits for the most
lightweight instance of Schwaemm and 384 bits for the lightest variant of Esch.
The biggest possible state size with 512 bits, can be applied by both schemes.
Both algorithms employ the sponge construction.

Two instances for hashing were proposed in [4], i.e., Esch256 and Esch384,
which allow to process messages of arbitrary length and output a digest of 256
bit, and 384 bit, length, respectively. Esch256, the main instance of Esch and
the one considered in our work, uses the 384-bit Sparkle permutation and has
a claimed security level of 128 bits.

8 F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, B. Viguier

All the four instances for authenticated encryption with associated data pro-
posed in [4], i.e., Schwaemm128-128, Schwaemm256-128, Schwaemm192-
192 and Schwaemm256-256 use a variation of the Beetle mode of operation
first presented in [16], which in turn is based on the duplexed sponge construc-
tion. We focus again on the main version Schwaemm256-128, which uses the
384 bit Sparkle (Sparkle384) permutation, with a rate of r = 256 bit and a
capacity of c = 128 bit, claiming a security level of 120 bits.

Sparkle384 requires 50 rotations, 68 XORs, 24 ADDs, and 2 shifts for a
single round. With the exception of rotation (3 cycles), all operations have a
latency of 1 cycle. Thus, iterated over 7 or 11 rounds this totals to an estimated
lower bound of 1708 cycles, and 2684 cycles respectively. For further details, we
refer to the specification [4].

Loop unrolling. Although unrolling the main loop within the Sparkle per-
mutation over 7 or 11 rounds results in a significant speed-up (see Table 3) when
using instruction cache (like the SiFive core used in this work, see Section 2.3),
this leads to significantly worse results in the case of AEAD (see Table 2).

Round Constants. In this optimization, we speed-up the permutation by in-
creasing the space required. In every round of the permutation, each of the six
ARX-boxes uses the same round constant in their computations. The idea is to
avoid the loading of the constants for the ARX-boxes in every round by loading
and saving these 6 constants in the registers before the transformation. This
comes with the cost of dedicating 6 registers to these constants.

This optimization can be applied in the loop as well as in the unrolled variant
of the implementation. In the unrolled implementation, we further reduce the
loading of round constants, since these 6 constants are also being used as the
round constants that are added to the state every round. In the 7-round variant of
the permutation, we save the loading of the first 6 round constants and only have
to load the 7th constant. In the 11-round variant of the permutation, we only
have to load the 8th constant extra. The other three are already loaded because
there are only 8 round constants defined and the selection index is calculated
modulo 8. In the loop unrolled implementation we reduce the instruction count
for 7 rounds by 72 instructions and for 11 rounds by 126 instructions.

Table 2 shows the achieved speed-up for Schwaemm256-128, Table 3 presents
the achieved results for Esch256.

3.3 Saturnin

Saturnin [15] is the NIST lightweight candidate designed by Canteaut, Duval,
Leurent, Naya-Plasencia, Perrin, Pornin, and Schrottenloher. By building on top
of a 256-bit block cipher with a 256-bit key, they describe three constructions for
hashing (Saturnin-Hash) and authenticated encryption of small (Saturnin-
Short) and large data segment (Saturnin-Cipher). This last AEAD scheme
uses the counter mode and a separate MAC.

We ported to our benchmark platform the reference implementation and both
the 32-bit optimized “bs32” and “bs32x” C implementations [15, Section 3.4.2].

Assembly or Optimized C for Lightweight Cryptography on RISC-V? 9

Table 2. Cycle counts for different Schwaemm256-128 implementations on the SiFive
board; encryption over a 128 bytes of message with 128 bytes of associated data.

platform Compiler Opt. Opt. C looped + round
cst ASM

loop-unrolled
Opt. C

SiFive Clang-10 -O3 72286 43877 (−40%) 1059813 (+94%)
SiFive Clang-9 -O3 73387 44558 (−40%) 1709958 (+95%)
SiFive GCC -O3 71271 42634 (−40%) 1790566 (+95%)

riscvOVPsim Clang-10 -O3 20842 20840 (±0%) 20277 (−3%)
riscvOVPsim Clang-9 -O3 20842 20840 (±0%) 20277 (−3%)
riscvOVPsim GCC -O3 20762 20161 (−2%) 20010 (−3%)

VexRiscv GCC -O2 25464 27018 (+6%) 24769 (−3%)

Table 3. Esch256 cycle counts on each platform. The hashing operation hashes 128
bytes of data.

platform Compiler Opt. Opt. C loop-unrolled
Opt. C

SiFive Clang-10 -O3 62734 34664 (−44%)
SiFive Clang-9 -O3 63893 28952 (−54%)
SiFive GCC -O3 58193 33331 (−42%)

riscvOVPsim Clang-10 -O3 17439 16552 (−5%)
riscvOVPsim Clang-9 -O3 17439 16552 (−5%)
riscvOVPsim GCC -O2 17849 17231 (−3%)

VexRiscv GCC -O2 18874 17753 (−6%)

The “bs32” and “bs32x” implementations both implement Saturnin in a 32×
bitsliced fashion. Their difference is that “bs32” bitslices inside of blocks, whereas
“bs32x” bitslices across blocks. When comparing the two bitsliced implementa-
tions, “bs32” showed a consistently better performance than the other, albeit
sometimes with a small margin. We decided that “bs32” would be the preferred
implementation to use on our platforms.

In all the implementations, we tweaked the code to make sure that any con-
stants would be loaded from SRAM, instead of (the relatively slow) SPI flash.
This considerably improved the performance of the bitsliced implementations.

In the end, we see that the Optimized C implementation is considerably
faster than the reference implementation in terms of performance, with gener-
ally a speed-up by a factor of 2. Another interesting property from the results in
Tables 4 and 5 is the performance stability of the implementations across com-
pilers. Where the “bs32” performance is very stable—with cycle counts generally
varying less than 10%—the performance of the reference implementation varies
a lot with different compiler versions. Nonetheless, we see that newer compiler
versions seem to produce faster code.

10 F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, B. Viguier

Table 4. Saturnin-Hash cycle counts on each platform. The hashing operation hashes
128 bytes of data.

platform Compiler Opt. Ref. bs32

SiFive Clang-10 -O3 49433 28199 (−43%)
SiFive Clang-9 -O3 52868 30483 (−42%)
SiFive GCC -O3 78110 30321 (−61%)

riscvOVPsim Clang-10 -O3 46946 27070 (−42%)
riscvOVPsim Clang-9 -O3 48785 27972 (−43%)
riscvOVPsim GCC -O3 76211 29030 (−61%)

VexRiscv GCC -O2 103325 32169 (−69%)

Table 5 illustrates the fact that the greedy unrolling and inlining by GCC
with -O3 results in major speed-up on simulators. However once tested on a
physical device such as the SiFive development board (2.3), this results in a
code too large for the 16KB cache, inducing in a slowdown by a factor of 5.

Table 5. Saturnin-Cipher cycle counts on each platform. The cipher encrypts 128
AD bytes and 128 message bytes.

platform Compiler Opt. Ref. bs32 bs32x

SiFive Clang-10 -O3 121651 59368 (−51%) 68792 (−43%)
SiFive Clang-9 -O3 106665 62743 (−41%) 91511 (−14%)
SiFive GCC -O3 151428 60817 (−60%) 5210541 (×34)
SiFive GCC -Os 183464 65469 (−64%) 138187 (−24%)

riscvOVPsim Clang-10 -O3 93184 55154 (−41%) 61077 (−34%)
riscvOVPsim Clang-9 -O3 96540 55617 (−42%) 63767 (−33%)
riscvOVPsim GCC -O3 145734 57366 (−61%) 75646 (−48%)

VexRiscv GCC -O2 202226 65015 (−68%) 88278 (−56%)

3.4 Ascon

Ascon [23] is a scheme proposed by Dobraunig, Eichlseder, Mendel and Schläf-
fer. It uses a very small 320-bit state which allows it to fit in registers on most
systems. The authors introduce multiple variants of Ascon AEAD as well as
a hashing scheme. We focus our efforts on the Ascon-128 AEAD variant. We
expect that our results translate fairly well to the other variants and the hashing
scheme as they are very similar.

We use the Ascon C [3] repository as a base line, more specifically we use
the reference, the 64-bit optimized, and the 32-bit interleaved implementations
as starting point for our optimizations.

Assembly or Optimized C for Lightweight Cryptography on RISC-V? 11

Improved formula. First we optimize the inner permutation by improving the
Ascon S-box formula (Figure 1). We reduce the number of required instructions
from 22 to 17 and the number of temporary registers from 5 to 3 at the cost of
less potential for parallelism. Instruction-level parallelism —such as out-of-order
execution— is common in high-end CPUs but not so common in lightweight
platforms like our RISC-V targets. This optimization gives us a 10% speed-up
for both the assembly and Optimized C implementations (Table 6).

Fig. 1. These formulas compute the Ascon S-box in 17 operations (once duplicate
operations are taken out); on indicates output bit n and in indicates input bit n.

o0 = i3 ⊕ i4 ⊕ (i1 ∨ (i0 ⊕ i2 ⊕ i4))

o1 = i0 ⊕ i4 ⊕ ((i1 ⊕ i2) ∨ (i2 ⊕ i3))

o2 = i1 ⊕ i2 ⊕ (i3 ∨ ¬i4)
o3 = i1 ⊕ i2 ⊕ (i0 ∨ (i3 ⊕ i4))

o4 = i3 ⊕ i4 ⊕ (i1 ∧ ¬(i0 ⊕ i4))

Table 6. Cycle counts for the different Ascon’s round functions over 6 rounds; Com-
piled with Clang-10 and -O3

Platforms C-ref Assembly Optimized C

SiFive 832 750 (−10%) 750 (−10%)
riscvOVPsim 830 748 (−10%) 748 (−10%)

Bit Interleaving. We also compare the C implementation optimized for 32-bit
interleaving. It performs the worst of all others including the baseline imple-
mentation. Bit interleaving allows 32-bit rotations to model 64-bit rotations ef-
ficiently, unfortunately our targets does not support 32-bit rotations. We expect
this implementation will perform better when targeting RISC-V cores comes
with the B extension, which adds rotation instructions.

Optimized 64 bits. Finally, we compare the C implementation optimized for
64-bit processors. On RISC-V cores without the B extension, the 64-bit oper-
ations are compiled to 32-bit operations in a straightforward manner and the
compiler has no trouble with it. As RISC-V does not support misaligned memory
access, we had to modified the code to handle the authentication tag.

While on the RISC-V OVP simulator the 64-bit optimized version is 7% faster
than the baseline, testing it on the SiFive board reveals significant slowdowns
due to the code not fitting in the 16KB instruction cache.

Our final implementation makes use of the improved S-box formula in a 6-
round unrolled Optimized C permutation. By folding the processing of associated
data and message we are able to reuse the code and have to compiled code fit in
the instruction cache. Applying these modifications, we achieve our best results:
15% faster than the baseline.

12 F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, B. Viguier

Table 7. Cycle counts for different Ascon implementations in OVP sim for encrypting
128 bytes of message and 128 bytes of associated data; compiled with Clang-10 and
-O3

Implementation OVP sim SiFive

ref. & default permutation 31990 32038
ref. & asm permutation 28988 (−9%) 29036 (−9%)
ref. & inlined Optimized C perm. 27489 (−14%) 27703 (−14%)
bit interleaved inline permutation 32001 (±0%) 1559691 (×49)
opt. 64-bit & default unrolled perm. 29646 (−7%) 1191702 (×37)
opt. 64-bit & asm permutation 29090 (−9%) 29170 (−9%)
opt. 64-bit & fully unrolled Opt. C perm. 27589 (−14%) 809631 (×25)
opt. 64-bit & 6-round unrolled Opt. C perm. 27184 (−15%) 27271 (−15%)

3.5 Delirium

Elephant [12] is a family of lightweight authenticated encryption schemes. The
mode of Elephant is a nonce-based encrypt-then-MAC construction, where
encryption is performed using counter mode based on permutation masked using
LFSRs. One of the instances of Elephant is Elephant-Keccak-f [200], also
called Delirium, which uses Keccak as its permutation primitive. Delirium
has a state size of 200 bits and claimed a security level of 127 bits. We optimize
Delirium by exploiting Elephant’s possibility for parallelization by using bit-
interleaving.

Bit Interleaving. In order to make full use of the 32-bit registers, we combine
four blocks of byte-sized elements into one block of 4-byte elements. Thus, we can
process four blocks at the same time and our state representation changes to an
array of 25 32-bit words (5-by-5-by-32) with a total size of 800 bits. In this new
representation, one block amounts to four blocks in the standard representation.

There are two possible cases when transforming blocks before encrypting/de-
crypting to the new representation. The first and the easiest case is when the
amount of blocks that need to be transformed is a multiple of four. This means
that all groups of four blocks consisting of 8-bit words can be interleaved to
make one block of 32-bit words. The second case is when the amount of blocks
is not a multiple of four. Since the new representation needs four “old” blocks
to transform into one new block, we have to use padding blocks filled with zero
values to add to make the amount of blocks to a multiple of four.

After encryption/decryption, when transforming back to a byte representa-
tion of the data, we have to de-interleave each interleaved 32-bit block back to
four blocks of bytes. Since it is possible that the amount of original blocks was
not a multiple of four, we need to make sure none of the data from the added
padding blocks gets joined in the output data. This can be done by cutting off
any output data which exceeds the message-length variable.

Assembly or Optimized C for Lightweight Cryptography on RISC-V? 13

As shown in Table 8, we note that shorter inputs perform worse in the opti-
mized implementation. This is because the effort of interleaving data to process
four blocks simultaneously is wasted if there are very few blocks to process.

Table 8. Cycle counts for different Elephant-Keccak-f [200] implementations on
the SiFive board; encryption over a 32/64/128 bytes message with 32/64/128 bytes of
associated data.

platform Compiler message
length

data
length

C-ref bit interleaved

SiFive GCC 16 16 66541 73989 (+11%)
SiFive GCC 32 32 91837 74385 (−19%)
SiFive GCC 64 64 143181 74890 (−47%)
SiFive GCC 128 128 245100 113031 (−53%)
SiFive Clang-9 128 128 294643 160494 (−46%)
SiFive Clang-10 128 128 241975 145936 (−40%)

riscvOVPsim GCC 32 32 64651 66690 (+3%)
riscvOVPsim GCC 64 64 102138 66805 (−35%)
riscvOVPsim GCC 128 128 176086 101966 (−42%)
riscvOVPsim Clang-9 128 128 168313 106904 (−36%)
riscvOVPsim Clang-10 128 128 163973 103631 (−37%)

3.6 Xoodyak

Xoodyak [20], based on the Xoodoo permutation [19,18], is a cryptographic
scheme that is suitable for several symmetric-key functions, including hashing,
encryption, MAC computation and authenticated encryption. Xoodoo, accord-
ing to its authors [19], can be seen as a porting of the Keccak-p [10,11] design
approach to a Gimli-shaped [7] state.

Xoodoo iteratively applies 12 rounds to a 384-bit state, which can be treated
as 3 horizontal planes, each one consisting of 4 parallel 32-bit lanes. The choice
of 12 rounds justifies a security claim in the hermetic philosophy. The claimed
security strength for Xoodyak is 128 bits.

An estimated lower bound for cycles taken by Xoodoo can be calculated as
follows. It requires 24 rotations, 37 XORs, 12 ANDs, and 12 NOTs for a single
round. With the exception of rotation (3 cycles), all operations take 1 cycle.
Thus, iterated over 12 rounds this totals to 1596 cycles.

Lane Complementing. The idea behind lane complementing, first proposed
in the Keccak implementation overview [11], is to reduce the number of NOT
instructions by complementing certain lanes before the transformation.

In Xoodoo the state is ordered in 4 sheets, each containing 3 lanes with a
width of 32-bit. The χ layer computes 3 XOR, 3 AND and 3 NOT operations for
every sheet in the state. This sums up to 12 NOT operations per round and 144

14 F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, B. Viguier

NOT operations in total. In the default case, the χ transformation for every lane
a[i] in a sheet, with 0 ≤ i ≤ 2 and index calculation mod 3, can be calculated as
shown in equation (1).

a[i]← a[i]⊕ (a[i+ 1] ∧ a[i+ 2]) (1)

For example, we now want to complement lane a[2]. Thus, the equation of lane
a[0] gets rearranged as follows:

a[0]′ = a[0]⊕ (a[1] ∧ a[2]) = a[0]⊕ (a[1] ∨ a[2]) = a[0]⊕ (a[1] ∨ a[2]),

a[0]′ = a[0]⊕ (a[1] ∨ a[2]).

The complementation of a[2] results in the cancellation of the negation of a[1],
the switch from an AND to an OR operation and the complement of a[0]′. Now
we calculate all three lanes of a sheet with the complement of the lane a[2]← a[2]:

a[0]← a[0]′ = a[0]⊕ (a[1] ∨ a[2]),

a[1]← a[1]′ = a[1]⊕ (a[2] ∧ a[0]),

a[2]← a[2]′ = a[2]⊕ (a[0] ∧ a[1]).

It can be observed that we only need one complementation for this sheet, instead
of three. For the computation of a[1], a[0] is complemented to be positive, because
a[0] was negated before. This example of lane complementing comes with the
cost of applying the input mask a[2] and output mask a[0], a[2].

The possible transformations of the boolean equations for a sheet are not
fixed to one. Thus, there are multiple boolean equations that are still logically
congruent, but may differ in the input and output mask. We want to find the
boolean equations and input mask with the lowest possible number of NOT-
instructions. To simplify this problem, we set the boolean equations to a fixed
set and only care about the possible input patterns. Therefore, we employ an
algorithm for finding the minimum NOT instruction count for a certain set
of boolean equations. We test all 212 possible combinations of input masks. For
every input mask, we follow the complements propagation through the 12 rounds
of the permutation as a symmetric difference pattern in the state and count the
NOT instructions.

After the application of the algorithm, we obtain an input mask and a se-
quence of boolean equations. This input mask is 2-round invariant, meaning that
the input mask is the always same after every two rounds. Hence, it can be im-
plemented as a loop and therefore have a smaller code size. The obtained input
mask P is the following (denoted in x, y coordinates):

P = {(0, 0), (1, 0), (2, 0), (3, 0)}.

We reduce the number of NOT operations to exactly 33% over 12 rounds.
The application of our input and output mask, each costs 4 NOT operations.
Due to a larger number of lanes in Keccak, Stoffelen [34] achieved a reduction
to 20%.

Lane complementing is not an assembly-specific optimization. As shown in
tables 9 to 11, we achieve a very similar speed-up in assembly and in C.

Assembly or Optimized C for Lightweight Cryptography on RISC-V? 15

Table 9. Cycle counts for different implementations of Xoodyak in AEAD mode GCC
compiled with -O2 in riscvOVPsim for encrypting 128 bytes of message and 128 bytes
of associated data.

Implementation riscvOVPsim Relative

reference 105463
loop unrolled + lane complementing assembly 29574 −71%
loop unrolled + lane complementing Optimized C 28672 −72%

Table 10. Cycle counts for Xoodyak in hash mode on each platform, compiled with
-O3. The hashing operation hashes 128 bytes of data.

platform Compiler Ref. unrolled & lane comp.

SiFive Clang-10 81349 17963 (−78%)
SiFive Clang-9 88451 18865 (−79%)
SiFive GCC 82741 17063 (−79%)

riscvOVPsim Clang-10 18114 16845 (−7%)
riscvOVPsim Clang-9 18059 16898 (−6%)
riscvOVPsim GCC 23247 16614 (−29%)

VexRiscv GCC -O2 261678 38378 (−85%)

Table 11. Cycle counts for Xoodyak in AEAD mode on each platform, compiled with
-O3, for encrypting 128 bytes of message and 128 bytes of associated data.

platform Compiler Ref. unrolled & lane comp.

SiFive Clang-10 103717 26246 (−75%)
SiFive Clang-9 112414 27392 (−76%)
SiFive GCC 103522 23238 (−78%)

riscvOVPsim Clang-10 25002 23429 (−6%)
riscvOVPsim Clang-9 25002 23429 (−6%)
riscvOVPsim GCC 29775 21668 (−28%)

VexRiscv GCC -O2 261678 38378 (−85%)

3.7 AES

In [34], Stoffelen proposes two assembly implementations of AES: the first one
is based on lookup tables, and the second one uses a bitsliced approach.

With a lookup table. When encrypting a single block of 16 bytes, multiple
steps of the round function can be combined in a lookup table, also called T-
table by Daemen and Rijmen in [21]. Note that this type of implementation is
usually vulnerable to cache attacks [5,13,33]. Because none of our benchmarking
platforms have a data cache, we believe this implementation is likely “safe” to
use.

16 F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, B. Viguier

For his table-based implementation, Stoffelen makes use of the baseline in-
structions described in [8]. Most of the proposed optimization by Bernstein and
Schwabe are not applicable due to the small instruction set of the RISC-V
architecture. The translation from assembly to C using uint32_t to simulate
registers is straightforward, and the lookup table is converted to an array as
uint32_t variable[].

Table 12. Cycle counts for the Assembly of [34] and its translation to C on the SiFive
board, compiled with Clang-10 and -O3.

Assembly Optimized C

Key schedule 342 342
1-block encryption 903 901

Note that if the table is declared as const, the compiler will place it in the
.rodata segment. While this change does not have any impact on the verilator
and the riscvOVPsim simulators, it induces a major slowdown in the case of the
SiFive board as the SPI flash is significantly slower than the SRAM.

In order to prevent the compiler from messing with the pointer arithmetic,
data pointers are kept in the uint8_t* type. This forces us to cast the pointer to
uint32_t* before de-referencing to trigger the compiler to use the lw instruction.

Y0 = RK[0]; T0 = (uint32_t*)(LUT1 + ((*X0 & 0xff) << 4)); Y0 = Y0 ^ *T0;
Y1 = RK[1]; T1 = (uint32_t*)(LUT1 + ((*X1 & 0xff) << 4)); Y1 = Y1 ^ *T1;
Y2 = RK[2]; T2 = (uint32_t*)(LUT1 + ((*X2 & 0xff) << 4)); Y2 = Y2 ^ *T2;
Y3 = RK[3]; T3 = (uint32_t*)(LUT1 + ((*X3 & 0xff) << 4)); Y3 = Y3 ^ *T3;

Listing 1.1. Code fragment of AES encryption

Using a bitsliced approach. When using AES in CTR or GCM mode, multi-
ple blocks can be processed in parallel using a bitsliced implementation [26,28].
This strategy is often more efficient and avoids lookup tables, making the im-
plementation more resistant against timing attacks.

By using the same approach as with lookup tables, we translate the assembly
from [34] back into C. As seen in Table 13 the key schedule it is slightly slower.
However this translation approach gives us a 4% speed-up in the case of the
encryption in CTR mode (Table 13).

Table 13. Cycle counts for the Assembly of [34] and its translation to C on the SiFive
board, compiled with Clang-10 -O3.

Assembly Optimized C

Key schedule 1248 1256
Encryption of 128 blocks 260695 249813 (-4%)

Assembly or Optimized C for Lightweight Cryptography on RISC-V? 17

3.8 Keccak

We now have a look at the Keccak-f family permutation—designed by Bertoni,
Daemen, Peeters and Van Assche [10]—, more precisely its 1600-bit instance
found in the SHA-3 standard by NIST[24]. The permutation is used in multiple
cryptographic constructions including future post-quantum candidates such as
FrodoKEM[14], NewHope[1], SPHINCS+[6] and others.

Stoffelen [34] provides us with another optimized implementation for RISC-V
inspired by the Keccak implementation overview [11]. Keccak-f [1600] works on
a state composed of 25 64-bit lanes, in other words a total of 50 32-bits words.
This is more than the number of register made available by the ISA, preventing
the state from completely fitting in the registers. By using bit interleaving and
other techniques, Stoffelen manages to reduce the number of cycles used.

Table 14. Cycle counts for the Assembly of Keccak [34] and its translation to C on
the SiFive board, compiled with GCC -Os.

Assembly Optimized C

Keccak-f [1600] 13731 13336 (-3%)

We take his implementation and translate it back to C. We compile with GCC
and -Os instead of -O2 or -O3 to get slightly faster results than the assembly
implementation in [34] (Table 14).

4 Comparison with other implementations and additional
benchmark

Some other implementations of lightweight candidates are publicly available;
we chose to compare our work against the repository of Weatherley2 as their
implemented are “focused on good performance in plain C on 32-bit embedded
microprocessors”.

As Clang-10 generally produces faster results than GCC with -O3, we used
it to compile and benchmark every optimized C implementation provided by
Weatherley. We measure the cycle counts for encryption of AEAD schemes for
128-byte messages with 128 bytes of associated data, and provide our results in
Appendix A.2, Table 17.

In Table 15, we summarize the performance of our software and Weatherley’s
implementations.

While on the OVP simulator most of our implementations produces just
slightly better results with an average at −4% cycle counts; when using the
SiFive board, the unrolled implementation of Weatherley suffer heavily from
the 16KB instruction cache. This makes our RISC-V-optimized code on average
47.5% faster.
2 https://github.com/rweather/lightweight-crypto, commit 52c8281

https://github.com/rweather/lightweight-crypto

18 F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, B. Viguier

Table 15. Cycle counts for AEAD mode on the SiFive and riscvOVPsim platform,
compiled with Clang-10 -O3, for encrypting 128 bytes of message and 128 bytes of
associated data.

Algorithm Weatherley our results
OVP SiFive OVP SiFive

Gimli 37596 38530 35690 (-5%) 35853 (-7%)
Schwaemm256-128 20842 72286 20277 (-3%) 43877 (-40%)

Saturnin 55367 152803 55154 (-1%) 59368 (-61%)
Ascon 41228 42562 27184 (-34%) 27271 (-36%)

Delirium 110171 765235 103631 (-6%) 145936 (-81%)
Xoodyak 18852 64869 23451 (+24%) 26246 (-60 %)

5 Conclusion

We described how multiple lightweight NIST candidates such as Gimli, Sparkle,
Saturnin, Ascon, Delirium, and Xoodyak can be efficiently implemented.
With strategies such as loop unrolling, we are able to write assembly code close
to the lower bound given by the number instructions arithmetic. By translat-
ing our assembly implementation back into C, we get the compiler to further
optimize our results.

Using the AES and Keccak assembly implementations from Stoffelen [34],
we also show that our approach is applicable to existing code bases, and may
provide slightly improved results while increasing the readability and maintain-
ability of the code.

We use the HiFive1 development board to illustrate that algorithms need to
be tested on physical devices in order to guarantee useful optimized implemen-
tations (Table 17). Although strategies such as fully unrolled loops may work
nicely in simulated environments such as riscvOVPsim; they will fail at length
on physical devices with e.g., a 16KB instruction cache.

As the NIST lightweight competition is currently taking place, we hope our
results will be found useful by the candidates’ implementers and designers. On
the other side, RISC-V offers the opportunity to disrupt the processor indus-
try by using a very collaborative approach offering more interoperability and
partnership opportunities.

Assembly or Optimized C for Lightweight Cryptography on RISC-V? 19

References

1. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange: A new hope. In Proceedings of the 25th USENIX Confer-
ence on Security Symposium, SEC’16, page 327–343, USA, 2016. USENIX Associ-
ation. https://www.usenix.org/system/files/conference/usenixsecurity16/
sec16_paper_alkim.pdf. 17

2. Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen, and Richard Petri.
ISA Extensions for Finite Field Arithmetic: Accelerating Kyber and NewHope
on RISC-V. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2020(3):219–242, Jun. 2020. https://tches.iacr.org/index.php/TCHES/
article/view/8589. 2

3. Ascon C repository on GitHub. https://github.com/ascon/ascon-c. 10
4. Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl,

Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju Wang. Lightweight
AEAD and Hashing using the Sparkle Permutation Family. IACR Transactions
on Symmetric Cryptology, 2020(S1):208–261, Jun. 2020. https://tosc.iacr.org/
index.php/ToSC/article/view/8627. 7, 8

5. Daniel J. Bernstein. Cache-timing attacks on AES, 2005. https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf. 15

6. Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost
Rijneveld, and Peter Schwabe. The SPHINCS+ Signature Framework. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’19, page 2129–2146, New York, NY, USA, 2019. Association for
Computing Machinery. https://dl.acm.org/doi/10.1145/3319535.3363229. 17

7. Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-Xavier
Standaert, Yosuke Todo, and Benoît Viguier. Gimli: a cross-platform permutation.
In Cryptographic Hardware and Embedded Systems – CHES 2017, 2017. https:
//eprint.iacr.org/2017/630. 6, 13

8. Daniel J. Bernstein and Peter Schwabe. New AES Software Speed Records. In
Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors, Progress
in Cryptology - INDOCRYPT 2008, pages 322–336, Berlin, Heidelberg, 2008.
Springer. https://www.cryptojedi.org/papers/aesspeed-20080926.pdf. 16

9. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. In ECRYPT Hash Workshop, volume 2007, 2007. https://keccak.
team/files/SpongeFunctions.pdf. 6

10. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology –
EUROCRYPT 2013, pages 313–314, Berlin, Heidelberg, 2013. Springer. https:
//link.springer.com/chapter/10.1007/978-3-642-38348-9_19. 13, 17

11. Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van
Keer. Keccak implementation overview, 2013. https://keccak.team/files/
Keccak-implementation-3.2.pdf. 13, 17

12. Tim Beyne, Yu Long Chen, Christof Dobraunig, and Bart Mennink. Elephant v1,
2019. https://www.esat.kuleuven.be/cosic/elephant/. 12

13. Joseph Bonneau and Ilya Mironov. Cache-Collision Timing Attacks against AES.
In Proceedings of the 8th International Conference on Cryptographic Hardware and
Embedded Systems, CHES’06, pages 201–215, Berlin, Heidelberg, 2006. Springer.
https://doi.org/10.1007/11894063_16. 15

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_alkim.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_alkim.pdf
https://tches.iacr.org/index.php/TCHES/article/view/8589
https://tches.iacr.org/index.php/TCHES/article/view/8589
https://github.com/ascon/ascon-c
https://tosc.iacr.org/index.php/ToSC/article/view/8627
https://tosc.iacr.org/index.php/ToSC/article/view/8627
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://dl.acm.org/doi/10.1145/3319535.3363229
https://eprint.iacr.org/2017/630
https://eprint.iacr.org/2017/630
https://www.cryptojedi.org/papers/aesspeed-20080926.pdf
https://keccak.team/files/SpongeFunctions.pdf
https://keccak.team/files/SpongeFunctions.pdf
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_19
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_19
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://www.esat.kuleuven.be/cosic/elephant/
https://doi.org/10.1007/11894063_16

20 F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, B. Viguier

14. Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the Ring!
Practical, Quantum-Secure Key Exchange from LWE. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS ’16,
page 1006–1018, New York, NY, USA, 2016. Association for Computing Machinery.
https://dl.acm.org/doi/abs/10.1145/2976749.2978425. 17

15. Anne Canteaut, Sébastien Duval, Gaëtan Leurent, María Naya-Plasencia, Léo Per-
rin, Thomas Pornin, and André Schrottenloher. Saturnin: a suite of lightweight
symmetric algorithms for post-quantum security. IACR Transactions on Sym-
metric Cryptology, 2020(S1):160–207, Jun. 2020. https://tosc.iacr.org/index.
php/ToSC/article/view/8621. 8

16. Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle Family
of Lightweight and Secure Authenticated Encryption Ciphers. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2018(2):218–241, May 2018.
https://tches.iacr.org/index.php/TCHES/article/view/881. 8

17. Rafael Cruz, Tiago Reis, Diego F. Aranha, and Harsh Kupwade Patil. Lightweight
cryptography on ARM. In NIST Lightweight Cryptography Workshop. NIST, 2016.
http://www.africacrypt.com/presentations/lw-arm-speed.pdf. 2

18. Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The design of
Xoodoo and Xoofff. IACR Transactions on Symmetric Cryptology, 2018(4):1–38,
Dec 2018. https://tosc.iacr.org/index.php/ToSC/article/view/7359. 13

19. Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and Ronny Van
Keer. Xoodoo cookbook. Cryptology ePrint Archive, Report 2018/767, 2018.
https://eprint.iacr.org/2018/767. 13

20. Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and Ronny Van
Keer. Xoodyak, a lightweight cryptographic scheme. IACR Transactions on Sym-
metric Cryptology, 2020(S1):60–87, Jun. 2020. https://tosc.iacr.org/index.
php/ToSC/article/view/8618. 13

21. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. In Information Security and Cryptography. Springer, 2002.
15

22. Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Johann Großschädl,
and Alex Biryukov. Design Strategies for ARX with Provable Bounds: Sparx and
LAX. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology
– ASIACRYPT 2016, pages 484–513, Berlin, Heidelberg, 2016. Springer. https:
//link.springer.com/chapter/10.1007/978-3-662-53887-6_18. 7

23. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1. 2, 2016. https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf. 10

24. Morris J Dworkin. FIPS 202: SHA-3 standard: Permutation-Based Hash and
Extendable-Output Functions. Technical report, National Institute of Standards
and Technology, 2015. https://doi.org/10.6028/NIST.FIPS.202. 17

25. Tim Fritzmann, Georg Sigl, and Johanna Sepúlveda. RISQ-V: Tightly Coupled
RISC-V Accelerators for Post-Quantum Cryptography. Cryptology ePrint Archive,
Report 2020/446, 2020. https://eprint.iacr.org/2020/446. 2

26. Emilia Käsper and Peter Schwabe. Faster and Timing-Attack Resistant AES-
GCM. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and
Embedded Systems – CHES 2009, pages 1–17, Berlin, Heidelberg, 2009. Springer.
https://link.springer.com/chapter/10.1007/978-3-642-04138-9_1. 16

https://dl.acm.org/doi/abs/10.1145/2976749.2978425
https://tosc.iacr.org/index.php/ToSC/article/view/8621
https://tosc.iacr.org/index.php/ToSC/article/view/8621
https://tches.iacr.org/index.php/TCHES/article/view/881
http://www.africacrypt.com/presentations/lw-arm-speed.pdf
https://tosc.iacr.org/index.php/ToSC/article/view/7359
https://eprint.iacr.org/2018/767
https://tosc.iacr.org/index.php/ToSC/article/view/8618
https://tosc.iacr.org/index.php/ToSC/article/view/8618
https://link.springer.com/chapter/10.1007/978-3-662-53887-6_18
https://link.springer.com/chapter/10.1007/978-3-662-53887-6_18
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://doi.org/10.6028/NIST.FIPS.202
https://eprint.iacr.org/2020/446
https://link.springer.com/chapter/10.1007/978-3-642-04138-9_1

Assembly or Optimized C for Lightweight Cryptography on RISC-V? 21

27. Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting Speculative Execu-
tion. In 2019 IEEE Symposium on Security and Privacy (SP), pages 1–19, 2019.
https://ieeexplore.ieee.org/document/8835233. 2

28. Robert Könighofer. A Fast and Cache-Timing Resistant Implementation of the
AES. In Tal Malkin, editor, Topics in Cryptology – CT-RSA 2008, pages 187–
202, Berlin, Heidelberg, 2008. Springer. https://link.springer.com/chapter/
10.1007/978-3-540-79263-5_12. 16

29. Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, An-
ders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Memory from User Space. In 27th
USENIX Security Symposium (USENIX Security 18), 2018. https://www.usenix.
org/system/files/conference/usenixsecurity18/sec18-lipp.pdf. 2

30. S. Liu. IoT connected devices worldwide 2030, 2019. https://www.statista.com/
statistics/802690/worldwide-connected-devices-by-access-technology/. 1

31. Nicky Mouha. The Design Space of Lightweight Cryptography. In NIST
Lightweight Cryptography Workshop 2015, Gaithersburg, United States, Jul 2015.
https://hal.inria.fr/hal-01241013/file/session5-mouha-paper.pdf. 2

32. Gorkem Nisanci, Remzi Atay, Meltem Kurt Pehlivanoglu, Elif Bilge Kavun,
and Tolga Yalcin. Will the Future Lightweight Standard be RISC-V Friendly?,
2019. https://csrc.nist.gov/CSRC/media/Presentations/will-the-future-
lightweight-standard-be-risc-v-fri/images-media/session4-yalcin-
will-future-lw-standard-be-risc-v-friendly.pdf. 2

33. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Counter-
measures: The Case of AES. In David Pointcheval, editor, Topics in Cryptol-
ogy – CT-RSA 2006, pages 1–20, Berlin, Heidelberg, 2006. Springer. https:
//www.cs.tau.ac.il/~tromer/papers/cache.pdf. 15

34. Ko Stoffelen. Efficient Cryptography on the RISC-V Architecture. In Pe-
ter Schwabe and Nicolas Thériault, editors, Progress in Cryptology – LATIN-
CRYPT 2019, pages 323–340, Cham, 2019. Springer International Publishing.
https://link.springer.com/chapter/10.1007/978-3-030-30530-7_16. 2, 14,
15, 16, 17, 18

35. Wen Wang, Bernhard Jungk, Julian Wälde, Shuwen Deng, Naina Gupta, Jakub
Szefer, and Ruben Niederhagen. XMSS and Embedded Systems. In Kenneth G.
Paterson and Douglas Stebila, editors, Selected Areas in Cryptography – SAC 2019,
pages 523–550, Cham, 2020. Springer International Publishing. https://link.
springer.com/chapter/10.1007/978-3-030-38471-5_21. 2

36. Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovi. The
RISC-V Instruction Set Manual. Volume 1: User-Level ISA, Version 2.2, 2017. 2

https://ieeexplore.ieee.org/document/8835233
https://link.springer.com/chapter/10.1007/978-3-540-79263-5_12
https://link.springer.com/chapter/10.1007/978-3-540-79263-5_12
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-lipp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-lipp.pdf
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://hal.inria.fr/hal-01241013/file/session5-mouha-paper.pdf
https://csrc.nist.gov/CSRC/media/Presentations/will-the-future-lightweight-standard-be-risc-v-fri/images-media/session4-yalcin-will-future-lw-standard-be-risc-v-friendly.pdf
https://csrc.nist.gov/CSRC/media/Presentations/will-the-future-lightweight-standard-be-risc-v-fri/images-media/session4-yalcin-will-future-lw-standard-be-risc-v-friendly.pdf
https://csrc.nist.gov/CSRC/media/Presentations/will-the-future-lightweight-standard-be-risc-v-fri/images-media/session4-yalcin-will-future-lw-standard-be-risc-v-friendly.pdf
https://www.cs.tau.ac.il/~tromer/papers/cache.pdf
https://www.cs.tau.ac.il/~tromer/papers/cache.pdf
https://link.springer.com/chapter/10.1007/978-3-030-30530-7_16
https://link.springer.com/chapter/10.1007/978-3-030-38471-5_21
https://link.springer.com/chapter/10.1007/978-3-030-38471-5_21

22 F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, B. Viguier

A Further Results

A.1 RISC-V Bitmanip (Bit Manipulation) Extension

In table 16, we present for some of the primitives the impact of using the RISC-
V bit manipulation extension3 (B). The provided instructions in this extension
are a work in progress. Thus, some instructions and their specification may
change before being accepted as a standard by the RISC-V Foundation. The
presented performance figures were compiled using the riscv-bitmanip branch
of the GCC compiler4 using the flags -O2 -mcmodel=medany -march=rv64gcb
-mabi=lp64d and calculated with the Spike RISC-V ISA Simulator5.

Table 16. Cycle counts comparison for some primitives using the RISC-V bit manip-
ulation extension.

primitive variant w/o B ext. with B ext.

Gimli-Hash C-ref 27628 22688
Gimli-Hash C-optimized 26771 22080
Gimli-Hash 8-round C-optimized 22224 16618

Esch256 C-ref 20605 13891
Esch256 loop unrolled 17585 11586

AES LUT C-optimized 3647 1578
AES CTR-Bitsliced C-optimized 1509 1431

Saturnin-Hash C-ref 83516 80866
Saturnin-Hash bs32 33087 30943
Xoodyak-Hash C-ref 28492 22440
Xoodyak-Hash unrolled & complementing 19123 14169
Keccak-f [1600] C-optimized 14633 12402
Keccak-f [200] C-optimized 9143 6119

A.2 Benchmark of other implementation

RISC-V hardware availability is scarce and most implementations are based on
simulators. Having the availability of both –board and simulator–, we benchmark
the work of Rhys Weatherley6 and present our measures in table 17. As such,
we illustrate the need of testing implementations on boards and constrained
environment.

3 https://github.com/riscv/riscv-bitmanip, commit a05231d
4 https://github.com/riscv/riscv-gcc/tree/riscv-bitmanip, commit 8b86205
5 https://github.com/riscv/riscv-isa-sim, commit 958dcdc
6 https://github.com/rweather/lightweight-crypto, commit 52c8281

https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-gcc/tree/riscv-bitmanip
https://github.com/riscv/riscv-isa-sim
https://github.com/rweather/lightweight-crypto

Assembly or Optimized C for Lightweight Cryptography on RISC-V? 23

Table 17: Cycle counts for different ciphers implementations clang-
10 compiled with -O3 for encrypting 128 bytes of message and 128
bytes of associated data.

Implementation riscvOVPSim SiFive Relative

ace_aead_encrypt 206040 1959318 +851%
ascon128_aead_encrypt 41228 42562 +3%
ascon128a_aead_encrypt 28284 29457 +4%
ascon80pq_aead_encrypt 41264 42639 +3%
comet_128_cham_aead_encrypt 21648 22570 +4%
comet_64_speck_aead_encrypt 24429 25515 +4%
comet_64_cham_aead_encrypt 60197 61552 +2%
drygascon128_aead_encrypt 96365 98194 +2%
drygascon256_aead_encrypt 120862 123710 +2%
estate_twegift_aead_encrypt 50051 855204 +1609%
dumbo_aead_encrypt 1365382 2927910 +114%
jumbo_aead_encrypt 1465147 3265908 +123%
delirium_aead_encrypt 110171 763144 +593%
forkae_paef_64_192_aead_encrypt 543575 818122 +51%
forkae_paef_128_192_aead_encrypt 349468 550627 +58%
forkae_paef_128_256_aead_encrypt 349485 510584 +46%
forkae_paef_128_288_aead_encrypt 457833 642481 +40%
forkae_saef_128_192_aead_encrypt 350409 523108 +49%
forkae_saef_128_256_aead_encrypt 350767 512754 +46%
gift_cofb_aead_encrypt 28277 28642 +1%
gimli24_aead_encrypt 37596 38530 +2%
grain128_aead_encrypt 71378 71687 -0%
hyena_aead_encrypt 37317 136055 +265%
isap_keccak_128a_aead_encrypt 243243 640729 +163%
isap_ascon_128a_aead_encrypt 204619 222540 +9%
isap_keccak_128_aead_encrypt 1190410 2467483 +107%
isap_ascon_128_aead_encrypt 585890 605107 +3%
knot_aead_128_256_encrypt 51298 224600 +338%
knot_aead_128_384_encrypt 30982 102381 +230%
knot_aead_192_384_encrypt 69190 228613 +230%
knot_aead_256_512_encrypt 97648 266707 +173%
lotus_aead_encrypt 84658 1006509 +1089%
locus_aead_encrypt 86693 1008575 +1063%
orange_zest_aead_encrypt 84917 159953 +88%
oribatida_256_aead_encrypt 104129 106399 +2%
oribatida_192_aead_encrypt 118296 121481 +3%
photon_beetle_128_aead_encrypt 157558 298030 +89%
photon_beetle_32_aead_encrypt 591344 1124306 +90%
pyjamask_128_aead_encrypt 287809 316105 +10%
pyjamask_masked_128_aead_encrypt 1407899 1602733 +14%

24 F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, B. Viguier

pyjamask_96_aead_encrypt 284920 308484 +8%
pyjamask_masked_96_aead_encrypt 1391787 1500329 +8%
romulus_n1_aead_encrypt 213113 218841 +3%
romulus_n2_aead_encrypt 197988 201165 +2%
romulus_n3_aead_encrypt 166744 309093 +85%
romulus_m1_aead_encrypt 282764 325705 +15%
romulus_m2_aead_encrypt 270063 291863 +8%
romulus_m3_aead_encrypt 231497 238422 +3%
skinny_aead_m1_encrypt 248751 251707 +1%
skinny_aead_m2_encrypt 248747 251677 +1%
skinny_aead_m3_encrypt 248721 251578 +1%
skinny_aead_m4_encrypt 248717 251548 +1%
skinny_aead_m5_encrypt 211871 215308 +2%
skinny_aead_m6_encrypt 211820 215179 +2%
schwaemm_256_128_aead_encrypt 20842 72286 +247%
schwaemm_128_128_aead_encrypt 23918 111207 +365%
schwaemm_192_192_aead_encrypt 28112 98569 +251%
schwaemm_256_256_aead_encrypt 30452 107680 +254%
spix_aead_encrypt 93090 348608 +274%
sundae_gift_0_aead_encrypt 44214 57268 +30%
sundae_gift_64_aead_encrypt 45838 58952 +29%
sundae_gift_96_aead_encrypt 45874 58996 +29%
sundae_gift_128_aead_encrypt 45906 58996 +29%
saturnin_aead_encrypt 55367 152798 +176%
saturnin_short_aead_encrypt 42 55 +31%
spoc_128_aead_encrypt 69789 839487 +1103%
spoc_64_aead_encrypt 113672 1651442 +1353%
spook_128_512_su_aead_encrypt 34778 285992 +722%
spook_128_384_su_aead_encrypt 46390 195868 +322%
spook_128_512_mu_aead_encrypt 34792 285764 +721%
spook_128_384_mu_aead_encrypt 46409 195708 +322%
subterranean_aead_encrypt 127707 132338 +4%
tiny_jambu_128_aead_encrypt 34776 37952 +9%
tiny_jambu_192_aead_encrypt 37590 40789 +9%
tiny_jambu_256_aead_encrypt 40394 43865 +9%
wage_aead_encrypt 788038 14336632 +1719%
xoodyak_aead_encrypt 18852 64869 +244%

	Assembly or Optimized C for Lightweight Cryptography on RISC-V?

